
- •Условия компланарности векторов
- •Условия коллинеарности векторов
- •Операция умножения матриц
- •Теорема условия существования обратной матрицы
- •Алгоритм нахождения обратной матрицы
- •Представление комплексных чисел Алгебраическая форма
- •Тригонометрическая и показательная формы
- •Формула Муавра и извлечение корней из комплексных чисел
- •Модуль и аргумент
- •Геометрическая модель
- •Формула Муавра и извлечение корней из комплексных чисел
- •Следствия
- •Следствие
- •Доказательство.
- •Табличный симплекс метод
Представление комплексных чисел Алгебраическая форма
Запись
комплексного числа
в
виде
,
,
называется алгебраической
формой комплексного
числа.
Сумма
и произведение комплексных чисел могут
быть вычислены непосредственным
суммированием и перемножением таких
выражений, как обычно раскрывая скобки
и приводя подобные, чтобы представить
результат тоже в стандартной форме (при
этом надо учесть, что
):
Тригонометрическая и показательная формы
Если
вещественную
и
мнимую
части
комплексного числа выразить через
модуль
и
аргумент
(
,
),
то всякое комплексное число
,
кроме нуля, можно записать в тригонометрической
форме
Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера:
где
—
расширение экспоненты для
случая комплексного показателя степени.
Отсюда вытекают следующие широко используемые равенства:
Формула Муавра и извлечение корней из комплексных чисел
Основная статья: Формула Муавра
Эта формула позволяет возводить в целую степень ненулевое комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид:
где — модуль, а — аргумент комплексного числа. В современной символике она опубликована Эйлером в 1722 году. Приведенная формуле справедлива при любом целом n, не обязательно положительном.
Аналогичная формула применима также и при вычислении корней -ой степени из ненулевого комплексного числа:
Модуль и аргумент
Модулем (абсолютной величиной) комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости (или, что то же, расстояние между точкой комплексной плоскости, соответствующей этому числу, и началом координат).
Модуль
комплексного числа
обозначается
и
определяется выражением
.
Часто обозначается буквами
или
.
Если
является вещественным
числом,
то
совпадает
с абсолютной
величиной этого
вещественного числа.
Для
любых
имеют
место следующие свойства модуля. :
1)
,
причём
тогда
и только тогда, когда
;;
2)
(неравенство
треугольника);
3)
;
4)
.
Из
третьего свойства следует
,
где
.
Данное свойство модуля вместе с первыми
двумя свойствами вводят на множестве
комплексных чисел структуру
двумерного нормированного
пространства над
полем
.
5)
Для пары комплексных чисел
и
модуль
их разности
равен
расстоянию между соответствующими
точками комплексной плоскости.
Угол
(в
радианах) радиус-вектора точки,
соответствующей числу
,
называется аргументом числа
и
обозначается
.
Из этого определения следует, что
;
;
.
Для комплексного нуля значение аргумента не определено, для ненулевого числа аргумент определяется с точностью до
, где
— любое целое число.
Главным значением аргумента называется такое значение , что
. Часто главное значение обозначается
[4]. Главное значение аргумента обратного числа отличается знаком от аргумента исходного:
Геометрическая модель
Геометрическое представление комплексного числа
Рассмотрим
плоскость с прямоугольной
системой координат.
Каждому комплексному числу
сопоставим
точку плоскости с координатами
(а
также радиус-вектор,
соединяющий начало координат с этой
точкой). Такая плоскость называется комплексной.
Вещественные числа на ней занимают
горизонтальную ось, мнимая единица
изображается единицей на вертикальной
оси; по этой причине горизонтальная и
вертикальная оси называются
соответственно вещественной и мнимой осями.
Часто бывает удобно рассматривать на комплексной плоскости также полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент). Подробнее см. ниже.
В этом наглядном представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза».
Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Часто этот метод даёт наиболее простое доказательство.
Действия над комплексными числами
Сравнение
означает,
что
и
(два
комплексных числа равны между собой
тогда и только тогда, когда равны их
действительные и мнимые части).
Сложение
Вычитание
Умножение
Деление