Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 1_2_3_Разработка САПР.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
5.66 Mб
Скачать

3.5. Математическое обеспечение анализа на функционально-логическом уровне Моделирование и анализ аналоговых устройств

На функционально-логическом уровне исследуют устройства, в качестве элементов которых принимают достаточно сложные узлы и блоки, считавшиеся системами на макроуровне. Поэтому необходимо упростить представление моделей этих узлов и блоков по сравнению с их представлением на макроуровне. Другими словами, вместо полных моделей узлов и блоков нужно использовать их макромодели.

Вместо двух типов фазовых переменных в моделях функционально-логического уровня фигурируют переменные одного типа, называемые сигналами. Физический смысл сигнала, т. е. его отнесение к фазовым переменным типа потока или типа потенциала, конкретизируют в каждом случае исходя из особенностей задачи.

Основой моделирования аналоговых устройств на функционально-логическом уровне является использование аппарата передаточных функций.

Анализ сводится к следующим операциям:

1) заданную схему устройства представляют совокупностью звеньев, и если схема не полностью покрывается типовыми звеньями, то разрабатывают оригинальные модели;

2) формируют ММС из моделей звеньев;

3) применяют прямое преобразование Лапласа к входным сигналам;

4) решают систему уравнений ММС и находят изображения выходных сигналов;

5) с помощью обратного преобразования Лапласа возвращаются во временную область из области комплексной переменной р.

Математические модели дискретных устройств

Анализ дискретных устройств на функционально-логическом уровне требуется прежде всего при проектировании устройств вычислительной техники и цифровой автоматики. Здесь дополнительно к допущениям, принимаемым при анализе аналоговых устройств, используют дискретизацию сигналов, причем базовым является двузначное представление сигналов. Удобно этими двумя возможными значениями сигналов считать «истину» (иначе 1) и «ложь» (иначе 0), а сами сигналы рассматривать как булевы величины. Тогда для моделирования можно использовать аппарат математической логики. Находят применение также трех- и более значные модели.

Элементами цифровых устройств на функционально-логическом уровне служат элементы, выполняющие логические функции и возможно функции хранения информации. Простейшими элементами являются дизъюнктор, конъюнктор, инвертор, реализующие соответственно операции дизъюнкции (ИЛИ) у = a or b, конъюнкции (Н) у = a and b, отрицания (НЕ) y = not а, где у— выходной сигнал, а и b — входные сигналы. Число входов может быть и более двух. Условные схемные обозначения простых логических элементов показаны на рис. 3.4.

Математические модели устройств представляют собой систему математических моделей элементов, входящих в устройство, при отождествлении сигналов, относящихся к одному и тому же соединению элементов.

Рис. 3.4. Условные обозначения логических элементов на схемах

Различают синхронные и асинхронные модели.

Синхронная модель представляет собой систему логических уравнений, в ней отсутствует такая переменная, как время. Синхронные модели используют для анализа установившихся состояний.

Асинхронные модели отражают не только логические функции, но и временные задержки в распространении сигналов.

Термины «синхронная» и «асинхронная модель» можно объяснить ориентированностью этих моделей на синхронные и асинхронные схемы соответственно. В синхронных схемах передача сигналов между цифровыми блоками происходит только при подаче на специальные синхровходы тактовых (синхронизирующих) импульсов. Частота тактовых импульсов выбирается такой, чтобы к моменту прихода синхроимпульса переходные процессы от предыдущих передач сигналов фактически закончились. Следовательно, в синхронных схемах расчет задержек не актуален, быстродействие устройства определяется заданием тактовой частоты.

Синхронные модели можно использовать не только для выявления принципиальных ошибок в схемной реализации заданных функций. С их помощью можно обнаруживать места в схемах, опасные с точки зрения возникновения в них искажающих помех. Ситуации, связанные с потенциальной опасностью возникновения помех и сбоев, называют рисками сбоя.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]