Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 1_2_3_Разработка САПР.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
5.66 Mб
Скачать

Место процедур формирования моделей в маршрутах проектирования

Вычислительный процесс при анализе состоит из этапов формирования модели и ее исследования (решения). В свою очередь, формирование модели включает две процедуры: во-первых, разработку моделей отдельных компонентов, во-вторых, формирование модели системы из моделей компонентов.

Первая из этих процедур выполняется предварительно по отношению к типовым компонентам вне маршрута проектирования конкретных объектов. Как правило, модели компонентов разрабатываются специалистами в прикладных областях, причем знающими требования к моделям и формам их представления в САПР. Обычно в помощь разработчику моделей в САПР предлагаются методики и вспомогательные средства, например, в виде программ анализа для экспериментальной отработки моделей. Созданные модели включаются в библиотеки моделей прикладных программ анализа.

На маршруте проектирования каждого нового объекта выполняется вторая процедура (рис. 3.1) — формирование модели системы с использованием библиотечных моделей компонентов. Как правило, эта процедура выполняется автоматически по алгоритмам, включенным в заранее разработанные программы анализа. Примеры таких программ имеются в различных приложениях и прежде всего в отраслях общего машиностроения и радиоэлектроники.

При применении этих программ пользователь описывает исследуемый объект на входном языке программы анализа не в виде системы уравнений, которая будет получена автоматически, а в виде списка элементов структуры, эквивалентной схемы, эскиза или чертежа конструкции. |

Рис. 3.1. Место процедур формирования моделей

на маршрутах проектирования

3.2. Математические модели в процедурах анализа на макроуровне Исходные уравнения моделей

Исходное математическое описание процессов в объектах на макроуровне представлено системами обыкновенных дифференциальных и алгебраических уравнений. Аналитические решения таких систем при типичных значениях их порядков в практических задачах получить не удается, поэтому в САПР преимущественно используются алгоритмические модели. В этом параграфе изложен обобщенный подход к формированию алгоритмических моделей на макроуровне, справедливый для большинства приложений.

Исходными для формирования математических моделей объектов на макроуровне являются компонентные и топологические уравнения.

Компонентными уравнениями называют уравнения, описывающие свойства элементов (компонентов), другими словами, это уравнения математических моделей элементов (ММЭ).

Топологические уравнения описывают взаимосвязи в составе моделируемой системы.

В совокупности компонентные и топологические уравнения конкретной физической системы представляют собой исходную математическую модель системы (ММС).

Очевидно, что компонентные и топологические уравнения в системах различной физической природы отражают разные физические свойства, но могут иметь одинаковый формальный вид. Одинаковая форма записи математических соотношений позволяет говорить о формальных аналогиях компонентных и топологических уравнений. Такие аналогии существуют для механических поступательных, механических вращательных, электрических, гидравлических (пневматических), тепловых объектов. Наличие аналогий приводит к практически важному выводу: значительная часть алгоритмов формирования и исследования моделей в САПР оказывается инвариантной и может быть применена к анализу проектируемых объектов в разных предметных областях. Единство математического аппарата формирования ММС особенно удобно при анализе систем, состоящих из физически разнородных подсистем.

В перечисленных выше приложениях компонентные уравнения имеют вид

FK(dV/dt,V,t)=0, (3.1)

топологические уравнения —

FT(V)=0, (3.2)

где V = (1, 2, ..., n) — вектор фазовых переменных; t — время.

Различают фазовые переменные двух типов, их обобщенные наименования — фазовые переменные типа потенциала (например, электрическое напряжение) и типа потока (например, электрический ток). Каждое компонентное уравнение характеризует связи между разнотипными фазовыми переменными, относящимися к одному компоненту (например, закон Ома описывает связь между напряжением и током в резисторе), а топологическое уравнение — связи между однотипными фазовыми переменными в разных компонентах.

Модели можно представлять в виде систем уравнений или в графической форме, если между этими формами установлено взаимно однозначное соответствие. В качестве графической формы часто используют эквивалентные схемы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]