- •Тема 1. Введение в автоматизированное проектирование
- •Системный подход к проектированию Понятие инженерного проектирования
- •Принципы системного подхода
- •Основные понятия системотехники
- •1.2. Структура процесса проектирования Иерархическая структура проектных спецификаций и иерархические уровни проектирования
- •Стадии проектирования
- •Содержание технических заданий на проектирование
- •Классификация моделей и параметров, используемых при автоматизированном проектировании
- •Типовые проектные процедуры
- •1.3. Системы автоматизированного проектирования и их место среди других автоматизированных систем Этапы жизненного цикла промышленных изделий
- •Структура сапр
- •Разновидности сапр
- •Понятие о cals-технологиях
- •1.4. Особенности проектирования автоматизированных систем Этапы проектирования
- •Открытые системы
- •Глава 2. Техническое обеспечение систем автоматизированного проектирования
- •2.1. Структура технического обеспечения
- •Требования, предъявляемые к техническому обеспечению
- •Типы сетей
- •Эталонная модель взаимосвязи открытых систем
- •2.2. Аппаратура рабочих мест в автоматизированных системах проектирования и управления Вычислительные системы в сапр
- •Периферийные устройства
- •Особенности технических средств в асутп
- •2.3. Методы доступа в локальных вычислительных сетях Множественный доступ с контролем несущей и обнаружением конфликтов
- •Маркерные методы доступа
- •2.4. Локальные вычислительные сети Ethernet Состав аппаратуры
- •Структура кадра
- •Разновидности сетей Ethernet
- •2.5. Сети кольцевой топологии Сеть Token Ring
- •Сеть fddi
- •2.6. Каналы передачи данных в корпоративных сетях Характеристики и типы каналов передачи данных
- •Радиоканалы
- •Аналоговые каналы
- •Цифровые каналы
- •Организация дуплексной связи
- •2.7. Стеки протоколов и типы сетей в автоматизированных системах Протокол tcp
- •Протокол ip
- •Адресация в tcp/ip
- •Другие протоколы стека tcp/ip
- •Протоколы spx/ipx
- •Сети х.25 и Frame Relay
- •Сети atm
- •Промышленные сети
- •Сетевое коммутационное оборудование
- •Глава 3. Математическое обеспечение анализа проектных решений
- •3.1. Компоненты математического обеспечения
- •Математический аппарат в моделях разных иерархических уровней
- •Требования к математическим моделям и численным методам в сапр
- •Место процедур формирования моделей в маршрутах проектирования
- •3.2. Математические модели в процедурах анализа на макроуровне Исходные уравнения моделей
- •Примеры компонентных и топологических уравнений
- •3.3. Методы и алгоритмы анализа на макроуровне Выбор методов анализа во временной области
- •Методы решения систем линейных алгебраических уравнений
- •Многовариантный анализ
- •3.4. Математическое обеспечение анализа на микроуровне Математические модели на микроуровне
- •Методы анализа на микроуровне
- •3.5. Математическое обеспечение анализа на функционально-логическом уровне Моделирование и анализ аналоговых устройств
- •Математические модели дискретных устройств
- •Методы логического моделирования
- •3.6. Математическое обеспечение анализа на системном уровне Основные сведения из теории массового обслуживания
- •Аналитические модели смо
- •Имитационное моделирование смо
- •Событийный метод моделирования
- •Сети Петри
- •Анализ сетей Петри
- •3.7. Математическое обеспечение подсистем машинной графики и геометрического моделирования Компоненты математического обеспечения
- •Геометрические модели
- •Методы и алгоритмы машинной графики (подготовки к визуализации)
- •Глава 4. Система автоматизированного проектирования autocad.
- •4 .1. Введение в AutoCad. Пользовательский интерфейс. Команды управления экраном Структура экрана
- •Выбор объектов.
- •Ввод координат.
- •Команды управлением экраном
- •4.2. Средства обеспечения точности. Сетка и Шаговая привязка
- •Режим орто и Объектная привязка.
- •Объектное и полярное отслеживание
- •Динамический ввод
- •4.3. Команды рисования
- •Команды редактирования объектов
- •Управление свойствами объектов. Слои. Свойства объектов.
- •Размеры.
- •Блоки. Работа с текстом
- •Редактирование вхождений (блоков).
- •Работа с текстом.
- •Компоновка чертежа, вывод на печать
- •Настройка параметров листа и печати
Протоколы spx/ipx
В сетях Netware фирмы Novell используются протоколы SPX (Sequence Packet Exchange) и IPX (Internet Packet Exchange) для транспортного и сетевого уровней соответственно.
Адрес получателя в пакете IPX состоит из номера сети (фактически номера сервера), адреса узла (это имя сетевого адаптера) и имени гнезда (прикладной программы). Пакет имеет заголовок в 30 байт и блок данных длиной до 546 байт. В пакете SPX заголовок включает 42 байт, т. е. блок данных не более 534 байт.
Установление виртуального соединения в SPX (создание сессии) заключается в посылке клиентом запроса connect, возможная реакция сервера — connected (успех) или disconnected (отказ). Запрос на разъединение возможен как от сервера, так и от клиента.
После установления соединения передача ведется по дейтаграммному протоколу IPX.
Сети х.25 и Frame Relay
Сети Х.25, работающие по одноименному стеку протоколов, предложенному международным телекоммуникационным союзом ITU (International Telecommunication Union), относятся к первому поколению сетей коммутации пакетов. Протоколы Х.25 разработаны еще в 1976 г. В свое время они получили широкое распространение, в России их популярность сохраняется, поскольку эти сети хорошо приспособлены к работе на телефонных каналах невысокого качества, составляющих в России значительную долю каналов связи. С помощью сетей Х.25 удобно соединять локальные сети в территориальную сеть, устанавливая между ними мосты Х.25.
Стандарт Х.25 относится к трем нижним уровням ЭМВОС, т. е. включает протоколы физического, канального и сетевого уровней. На сетевом уровне используется коммутация пакетов.
Характеристика сети Х.25:
• пакет содержит адресную, управляющую, информационную и контрольную части, т. е. в его заголовке имеются флаг, адреса отправителя и получателя, тип кадра (служебный или информационный), номер кадра (используется для правильной сборки сообщения из пакетов);
• на канальном уровне применено «оконное» управление, размер окна задает число кадров, которые можно передать до получения подтверждения (это число равно 8 или 128);
• передача данных по виртуальным (логическим) каналам, это относится к сетям с установлением соединения;
• узлы на маршруте, обнаружив ошибку, ликвидируют ошибочный пакет и запрашивает повторную передачу пакета.
В сетевом протоколе Х.25 значительное внимание уделено контролю ошибок (в отличие, например, от протокола IP, в котором обеспечение надежности передается на транспортный уровень). Эта особенность приводит к уменьшению скорости передачи, т. е. сети Х.25 низкоскоростные, но при этом их можно реализовать на каналах связи с невысокой помехоустойчивостью. Контроль ошибок производится при инкапсуляции и восстановлении пакетов (во всех промежуточных узлах), а не только в оконечном узле.
При использовании на физическом уровне телефонных каналов для подключения к сети достаточно иметь компьютер и модем. Подключение осуществляет провайдер.
Типичная структура сети Х.25 показана на рис. 2.10.
Типичная АКД в Х.25 — синхронный модем с дуплексным бит-ориентированным протоколом. Скорости от 9,6 до 64 кбит/с. Протокол физического уровня для связи с цифровыми каналами передачи данных — Х.21, а с аналоговыми-Х.21bis.
Рис. 2.10 Сеть Х.25
В сетях пакетной коммутации Frame Relay (FR) в отличие от сетей Х.25 обеспечивается большая скорость передачи данных (до 45 Мбит/с) за счет исключения контроля ошибок в промежуточных узлах, так как контроль, адресация, инкапсуляция и восстановление выполняются в оконечных пунктах, т. е. на транспортном уровне. В промежуточных узлах ошибочные пакеты могут только отбрасываться, а запрос на повторную передачу происходит от конечного узла средствами уровня, выше сетевого. Но для реализации FR нужны помехоустойчивые каналы передачи данных.
Другая особенность FR—пункты доступа фиксируются при настройке порта подключения к сети, а не динамически в процессе установления соединения. Поэтому наиболее подходящая сфера применения FR — объединение совокупности ЛВС, находящихся на значительном расстоянии друг от друга.
В сетях FR сигнализация о перегрузках осуществляется вставкой соответствующих битов в заголовок пакетов, проходящих по перегруженному маршруту, управление потоками предусматривает динамическое распределение полосы пропускания между соединениями. Поэтому возможна, в отличие от сетей Х.25, не только передача данных, но и передача оцифрованного голоса (так как для передачи голоса обычно требуется режим реального времени). По этой же причине FR лучше приспособлены для передачи неравномерного трафика, характерного для связей между ЛВС.
Сети FR также получают широкое распространение в России по мере развития помехоустойчивых каналов связи, так как облегчен переход к ним от сетей Х.25. Заметим, что радикальное повышение скоростей передачи интегрированной информации связывают с внедрением сетей асинхронной передачи данных.
