
- •I. Система обчислень mathcad
- •1. Основи роботи з MathCad
- •1.1. Математичні вирази
- •1.2. Типи даних
- •1.3. Функції
- •1.4. Текстові фрагменти
- •1.5. Графічні області
- •1.6. Побудова фігур, що перетинаються
- •1.7. Приклад
- •1.8. Створення анімаційного кліпу
- •1.9. Вправи для самостійної роботи.
- •1.10. Контрольні запитання
- •2. Розв’язок рівнянь засобами mathcad
- •2.9. Вправи для самостійної роботи.
- •2.10. Контрольні запитання
- •2.1. Чисельний розв’язок нелінійного рівняння
- •2.2. Відсутність збіжності функції root
- •2.3. Рекомендації з використання функції root
- •2.4. Знаходження коренів полінома
- •2.5. Розв’язок систем рівнянь
- •2.6. Розв’язок матричних рівнянь
- •2.7. Наближені розв’язки
- •2.8. Символьний розв’язок рівнянь
- •2.9. Вправи для самостійної роботи.
- •2.10. Контрольні запитання
- •3. Символьні обчислення
- •3.7. Вправи для самостійної роботи
- •3.8. Контрольні запитання
- •3.1. Виділення виразів для символьних обчислень
- •3.2. Символьні операції
- •3.2.1. Операції з виділеними виразами
- •3.2.2. Операції з виділеними змінними
- •3.2.3. Операції з виділеними матрицями
- •3.2.4. Операції перетворення
- •3.3. Стиль представлення результатів обчислень
- •3.4. Приклади символьних операцій у командному режимі
- •3.5. Оператори обчислення границь функцій
- •3.6. Завдання операторів користувача
- •3.7. Вправи для самостійної роботи
- •3.8. Контрольні запитання
- •II. Програмування в системі mathcad
- •1. Програмування з використанням програм-функційMathCad
- •1.1. Опис програми - функції і локального оператору присвоєння
- •1.2. Звернення до програми-функції MathCad
- •1.3. Програмування в програмі-функції лінійних алгоритмів
- •1.4. Програмування в програмі-функції алгоритмів, що розгалужуються
- •1.5. Програмування в програмі-функції циклічних алгоритмів
- •1.5.1. Програмування циклу типу арифметичної прогресії
- •1.5.2. Програмування ітераційних циклів
- •1.6. Можливі використання умовного оператора if
- •1.7. Додаткові оператори програмування циклів у пакеті Mathcad 7 Professional
- •2. Модульне програмування в Mathcad
- •2.1. Модульне програмування одного документу
- •2.2. Модульне програмування у декількох документах MathCad
- •2.1. Модульне програмування одного документу
- •2.2. Модульне програмування у декількох документах MathCad
- •III. Автоматизація статистичних обчислень.
- •1. Вибірки і їхнє представлення
- •1.1. Основні поняття
- •1.1. Основні поняття
- •2.1 Властивості оцінок
- •2.2. Теоретичне порівняння оцінок
- •2.3. Статистичне порівняння оцінок
- •2.4. Завдання для самостійної роботи
- •3. Довірчі межі та інтервали.
- •3.1. Основні положення
- •3.1.1. Побудова довірчих границь і інтервалів
- •3.2. Рівень довіри
- •3.3. Завдання для самостійної роботи
- •4. Методи побудови оцінок
- •4.1. Метод моментів
- •4.2. Метод найбільшої правдоподібності
- •4.3. Властивості оцінок найбільшої правдоподібності
- •4.1. Метод моментів
- •4.2. Метод найбільшої правдоподібності
- •4.3. Властивості оцінок найбільшої правдоподібності
- •5. Граничні теореми
- •5.1. Теорема Бернуллі
- •5.2. Закон великих чисел у формі Чебишева
- •5.3. Реалізація практично достовірної події
- •5.4. Стиск розподілу з ростом числа доданків
- •5.5. Посилений закон великих чисел
- •5.6. Теорема Гливенко основна теорема статистики
- •5.7. Центральна гранична теорема
- •6. Однаково розподілені доданки.
- •6.1. Різнорозподілені доданки
- •6.1. Різнорозподілені доданки
- •Додаток 1 Системні змінні
- •Додаток 2
- •Оператори
- •Показові і логарифмічні функції
- •Функції роботи з частиною числа (округлення й ін.)
3.2.4. Операції перетворення
У позиції Перетворення міститься розділ операцій перетворення, що створює підменю з наступними можливостями:
Фур'є — виконати пряме перетворення Фур'є щодо виділеної змінної;
Фур'є Оберненє — виконати обернене перетворення Фур'є щодо виділеної змінної;
Лапласа — виконати пряме перетворення Лапласа щодо виділеної змінної (результат — функція змінної s);
Лапласа Обернене — виконати обернене перетворення Лапласа щодо виділеної змінної (результат — функція змінної t);
Z — виконати пряме Z-перетворення виразу щодо виділеної змінної (результат — функція змінної z);
Оберненє Z — виконати обернене Z-перетворення щодо виділеної змінної (результат — функція змінної n) .
3.3. Стиль представлення результатів обчислень
На наочність обчислень впливає стиль представлення їхніх результатів. Наступна команда дозволяє задати той чи інший стиль:
Стиль Обчислень... — задати вивод результату символьної операції під основним виразом, поруч з ним чи замість нього (Рисунок 9).
Рисунок 9. Стиль Обчислень
3.4. Приклади символьних операцій у командному режимі
Більшість символьних операцій легко виконуються, так що нижче ми зупинимося лише на деяких прикладах. Символьна операція Розрахунки забезпечує роботу з математичними виразами, що містять вбудовані в систему функції і представленими в різному виді: поліноміальному, дрібно-раціональному, у виді сум і добутків, похідних і інтегралів і т.д. (Рисунок 10). Операція прагне зробити всі можливі чисельні обчислення і представити вирази в найбільш простому вигляді. Вона можлива над матрицями із символьними елементами. Похідні і визначені інтеграли, символьні значення яких обчислюються, повинні бути представлені у своїй природній формі.
Особливо слід зазначити можливість виконання чисельних обчислень з підвищеною точністю — 20 знаків після коми. Для переходу в такий режим обчислень потрібно числові константи в об'єктах, що обчислюються, задавати з обов'язковою вказівкою десяткової крапки, наприклад 10.0 чи 3.0, а не 10 чи 3. Ця ознака є вказівкою на проведення обчислень такого типу.
На рисунку 10 показані типові приклади дії операції Розрахунки.
Рисунок 10. Символьні обчислення
Тут ліворуч показані вихідні вирази, що піддаються символьним перетворенням, а праворуч — результат цих перетворень.
Операція Розрахунки одна з самих потужних. Як видно з рисунка 6, вона дозволяє в символьному виді обчислювати суми (і добутки) рядів, похідні і невизначені інтеграли, виконувати символьні і чисельні операції з матрицями.
Ця операція містить підменю. Команда Символьні тут найбільш важлива. Призначення інших команд очевидно: вони потрібні, якщо результат потрібно одержати у формі комплексного чи дійсного числа. Наприклад, якщо ви хочете замість числа одержати 3.141..., використовуйте команду З коми, що… плаває... У режимі символьних обчислень результат може перевершувати машинну нескінченність системи — див. приклад на обчислення ехр(1000.0) на Малюнку 10. При цьому число точних значущих цифр результату практично не обмежене (чи, точніше кажучи, залежить від ємності ОЗУ).
Операція Розкласти
на складові... повертає
розкладання в ряд Тейлора виразу щодо
виділеної змінної з заданим по запиті
числом членів ряду n (число
визначається по ступенях ряду). За
замовчуванням задане п =
6. У
розкладанні вказується залишкова
погрішність розкладання. На рисунку 11
представлене застосування цієї операції
для розкладання функції
. Мінімальна
погрішність виходить при малих х (див.
графічне представлення функції і її
ряду).
Рисунок 11. Розкладання функції в ряд Тейлора