
- •1 Классификация материалов. Требования к конструкционным материалам.
- •2 Металлы, их свойства. Кристаллическое строение металлов и типы кристаллических решеток металлов.
- •4 Реальное кристаллическое строение металлов. Закон процесса кристаллизации
- •5.Методы изучения структур металлов.
- •11 Остаточные напряжения. Наклёп.
- •12 Основные случаи взаимодействия компонентов в сплавах (механические смеси, твердые растворы, химические соединения).
- •14 Диаграмма состояния сплавов II рода. Неограниченная растворимость.
- •15.Связь между характером взаимодействия компонентов в двойных сплавах и их свойства (закон Курнакова).
- •16 Диаграмма состояния сплавов «железо-углерод». Характер взаимодействия железа с углеродом. Основные линии диаграммы.
- •17 Особенности кристаллизации и вторичные превращения в сталях.
- •18 Кристаллизация и вторичные превращения в чугунах
- •Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией.
- •19 Классификация углеродистых сталей (углеродистые обыкновенного качества, конструкционные качественные стали, инструментальные стали).
- •21 Чугуны. Классификация чугунов (серый, белый, ковкий, высокопрочный).
- •22 Основные методы упрочнения стальных изделий. Термическая обработка сталей.
- •23 Отпуск стали. Отжиг стали. Нормализация стали.
- •24 Закалка стали. Выбор охлаждающих средств для закалки. Виды закалки сред.
- •25 Прокаливаемость и закаливаемость стали. Поверхностная закалка стали.
- •26 Термомеханическая обработка.
- •27 Химико-термическая обработка (цементация, азотирование, цианирование, диффузионная металлизация).
- •28 Легированные стали. Классификация, маркировка. Причины высокой прочности сталей по сравнению с углеродистыми.
- •30.Цветные металлы и сплавы. Медь и ее сплавы. Алюминий и его сплавы. Титан.
- •31 Неметаллические материалы. Резина, пластмассы. Классификация и основные части пластмасс.
- •36 Электрофизические и электрохимические способы обработки металлов.
- •Часть 2:
- •7.Классификация и основные свойства проводниковых и полупроводниковых материалов.
- •1.1. Проводниковые материалы
- •1.2 Электроизоляционные материалы
- •9) Классификация материалов по агрегатному состоянию, по химическому составу и функциональному назначению.
- •10) Зависимость технологических и эксплуатационных свойств от химического состава.
- •11) Технология получения материалов высокой проводимости
- •14 Проводниковые материалы
- •15 Магнитные материалы
- •16 Полупроводниковые материалы и изделия
- •18 Стали и сплавы с особыми физическими свойствами
17 Особенности кристаллизации и вторичные превращения в сталях.
Важнейшей особенностью кристаллического состояния является упорядоченное расположение частиц вещества. Если вписать кристаллическую решетку в систему координат, то по расстоянию между ближайшими частицами в кристалле и углам между осями координат можно рассчитать взаимное расположение частиц в твердом теле. Для дальнейшего изучения кристаллического строения в кристаллической решетке можно выделить элемент объема из минимального количества частиц (атомов), многократным переносом (трансляцией) которого в пространстве можно построить весь кристалл.
В сталях основными являются три структуры: аустенит – твердый раствор углерода в γ – Fe [Fe γ(С)]; мартенсит – пересыщенный, частично упорядоченный твердый раствор углерода в α – Fe [Fe γ(С)]; перлит – эвтектоидная смесь феррита и цементита [Feα + Fe3 С]. Переход из одной структуры в другую характеризует основные превращения при термической обработке:
- первое превращение – это превращение перлита в аустенит, которое происходит при нагреве: П→А
- второе превращение – это превращение аустенита в феррито-цементитные смеси разной дисперсности в зависимости от скорости охлаждения: А→Ф+Ц;
- третье превращение заключается в превращении аустенита в мартенсит А→М при быстром охлаждении (при закалке);
- четвертое превращение заключается в разложении мартенсита при отпуске закаленной стали (М → продукты распада).
Любой технологический процесс термической обработки состоит из определенных комбинаций этих четырех превращений.
18 Кристаллизация и вторичные превращения в чугунах
Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).
При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием α (δ)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.
При
температурах, соответствующих линии
ВС,
из
жидкого раствора кристаллизуется
аустенит. В сплавах, содержащих от 4,3 %
до 6,67 % углерода, при температурах,
соответствующих линии CD,
начинают
выделяться кристаллы цементита
первичного. Цементит, кристаллизующийся
из жидкой фазы, называется первичным.
B
точке С при температуре 1147°С и концентрации
углерода в жидком растворе 4,3% образуется
эвтектика, которая называется ледебуритом.
Эвтектическое превращение с образованием
ледебурита можно записать формулой
ЖР4,3
Л[А2,14+Ц6,67].
Процесс
первичной кристаллизации чугунов
заканчивается по линии ECF
образованием
ледебурита.
Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит + ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный) + ледебурит.