
- •1 Классификация материалов. Требования к конструкционным материалам.
- •2 Металлы, их свойства. Кристаллическое строение металлов и типы кристаллических решеток металлов.
- •4 Реальное кристаллическое строение металлов. Закон процесса кристаллизации
- •5.Методы изучения структур металлов.
- •11 Остаточные напряжения. Наклёп.
- •12 Основные случаи взаимодействия компонентов в сплавах (механические смеси, твердые растворы, химические соединения).
- •14 Диаграмма состояния сплавов II рода. Неограниченная растворимость.
- •15.Связь между характером взаимодействия компонентов в двойных сплавах и их свойства (закон Курнакова).
- •16 Диаграмма состояния сплавов «железо-углерод». Характер взаимодействия железа с углеродом. Основные линии диаграммы.
- •17 Особенности кристаллизации и вторичные превращения в сталях.
- •18 Кристаллизация и вторичные превращения в чугунах
- •Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией.
- •19 Классификация углеродистых сталей (углеродистые обыкновенного качества, конструкционные качественные стали, инструментальные стали).
- •21 Чугуны. Классификация чугунов (серый, белый, ковкий, высокопрочный).
- •22 Основные методы упрочнения стальных изделий. Термическая обработка сталей.
- •23 Отпуск стали. Отжиг стали. Нормализация стали.
- •24 Закалка стали. Выбор охлаждающих средств для закалки. Виды закалки сред.
- •25 Прокаливаемость и закаливаемость стали. Поверхностная закалка стали.
- •26 Термомеханическая обработка.
- •27 Химико-термическая обработка (цементация, азотирование, цианирование, диффузионная металлизация).
- •28 Легированные стали. Классификация, маркировка. Причины высокой прочности сталей по сравнению с углеродистыми.
- •30.Цветные металлы и сплавы. Медь и ее сплавы. Алюминий и его сплавы. Титан.
- •31 Неметаллические материалы. Резина, пластмассы. Классификация и основные части пластмасс.
- •36 Электрофизические и электрохимические способы обработки металлов.
- •Часть 2:
- •7.Классификация и основные свойства проводниковых и полупроводниковых материалов.
- •1.1. Проводниковые материалы
- •1.2 Электроизоляционные материалы
- •9) Классификация материалов по агрегатному состоянию, по химическому составу и функциональному назначению.
- •10) Зависимость технологических и эксплуатационных свойств от химического состава.
- •11) Технология получения материалов высокой проводимости
- •14 Проводниковые материалы
- •15 Магнитные материалы
- •16 Полупроводниковые материалы и изделия
- •18 Стали и сплавы с особыми физическими свойствами
11 Остаточные напряжения. Наклёп.
Остаточное напряжение -упругая деформация и соответствующее ей напряжение, уравновешенное внутри тела при отсутствии внешних сил. В отличие от временных напряжений (напряжение внутреннее), остаточное напряжение сохраняются во времени.
Осн. причиной возникновения остаточного напряжения является неоднородность деформированного состояния ввиду различного изменения длины (объема) в разных зонах тела. Наклёп металлов и сплавов,изменение структуры и соответственно свойств металлов и сплавов, вызванное пластической деформацией при температуре ниже температуры рекристаллизации. Н. называется также технологический процесс создания упрочнённого состояния материала холодной поверхностной пластической деформацией.
12 Основные случаи взаимодействия компонентов в сплавах (механические смеси, твердые растворы, химические соединения).
В зависимости от характера взаимодействия компонентов различают сплавы:
механические смеси;
химические соединения;
твердые растворы.
Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.
Образуются между элементами значительно различающимися по строению и свойствам, когда сила взаимодействия между однородными атомами больше чем между разнородными. Сплав состоит из кристаллов входящих в него компонентов (рис. 4.1). В сплавах сохраняются кристаллические решетки компонентов.
Рис. 4.1. Схема микроструктуры механической смеси
Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.
Особенности этих сплавов:
Постоянство состава, то есть сплав образуется при определенном соотношении компонентов, химическое соединение обозначается Аn Вm/
Образуется специфическая, отличающаяся от решеток элементов, составляющих химическое соединение, кристаллическая решетка с правильным упорядоченным расположением атомов (рис. 4.2)
Ярко выраженные индивидуальные свойства
Постоянство температуры кристаллизации, как у чистых компонентов
Рис. 4.2. Кристаллическая решетка химического соединения
Сплавы твердые растворы – это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами.
Характерной особенностью твердых растворов является: наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя.
Твердый раствор состоит из однородных зерен (рис. 4.3).
13 Диаграмма состояния сплавов I рода. Эвтектика в сплавах.
Оба компонента А и В в жидком состоянии неограниченно растворимы, а в твердом – совсем не растворимы и не образуют химических соединений (свинец – сурьма) (рис. 6.5). Компоненты А и В взаимодействуют между собой при кристаллизации и образуют механическую смесь.
Механическая смесь двух или более видов кристаллов, одновременно кристаллизующихся из жидкой фазы называется эвтектикой. Это превращение идет при постоянной температуре и степени свободы, равной нулю. Такое превращение называется нонвариантным и может быть выражено схемой:
t - const
Lc A + B
Согласно рис. 6.5:
АСВ – линия ликвидус (линия начала кристаллизации);
ДСЕ – солидус (эвтектическая горизонталь), линия конца кристаллизации.
На кривой охлаждения (рис. 6.5) сплава 1:
участок 0 –1 соответствуют охлаждению жидкого сплава;
участок 1 – 2 – выделению кристаллов А;
участок 2 - 2 - совместному выделению кристаллов А и В.
Рис. 6.5. Кривая охлаждения сплавов (а) и диаграмма I рода (б)
Сплавы с концентрацией компонента В до точки С называются дозвтектическими, с концентрацией компонента В больше точки С – заэвтектическими.