
- •Примерные вопросы для самоподготовки
- •Жидкие среды организма
- •Внутренняя среда организма
- •Система крови
- •Основные функции крови
- •Количество и состав крови
- •Эритроциты
- •Функции эритроцитов
- •Гемоглобин, его строение, количество и соединения
- •Жизненный цикл эритроцитов
- •Эритропоэз
- •Возрастные особенности некоторых показателей крови и эритроцитов
- •Самостоятельная работа студентов
- •Работа 1. Техника взятия крови
- •Работа 2. Подсчет эритроцитов пробирочным методом
- •Работа 3. Определение гемоглобина по Сали
- •Работа 4. Расчет цветового показателя
- •Работа 5. Определение гематокритного числа
- •Примерные вопросы для самоподготовки
- •Лейкоциты
- •Лейкоформула (в %)
- •Лейкоцитозы и лейкопении
- •Нейтрофилы
- •Основные функции нейтрофилов
- •Базофилы
- •Эозинофилы
- •Основные функции эозинофилов
- •Моноциты
- •Классификация мононуклеарных фагоцитов
- •Некоторые физиологические свойства клеток мфс
- •Функции моноцитов и макрофагов
- •Лимфоциты
- •Классификация и функции т-лимфоцитов
- •Классификация и функции в-лимфоцитов
- •Другие разновидности лимфоцитов
- •Плазматические клетки
- •Регуляция лимфопоэза
- •Механизмы защиты клеточного гомеостаза
- •Неспецифическая резистентность организма
- •Специфические механизмы защиты клеточного гомеостаза
- •Регуляция иммунитета
- •Иммунная регуляторная система
- •Возрастные изменения лейкоцитов
- •Особенности неспецифической резистентности
- •Особенности иммунной системы
- •Самостоятельная работа студентов
- •Работа 1. Подсчет лейкоцитов пробирочным способом
- •Работа 2. Определение лейкоцитарной формулы
- •Примерные вопросы для самоподготовки
- •Состав плазмы крови
- •Физико-химические свойства крови
- •Возрастные изменения некоторых показателей физико-химических свойств крови
- •Группы крови
- •Реципиент донор(эритроциты)
- •Система агглютиногенов резус
- •Некоторые возрастные особенности антигенов, антител и правил переливания крови
- •Самостоятельная работа студентов
- •Работа 2. Определение скорости оседания эритроцитов (соэ)
- •Работа 3. Химический гемолиз
- •Работа 4. Определение группы крови по системе аво перекрестным методом
- •Работа 5. Определение резус-принадлежности
- •1. Реакция агглютинации на плоскости с помощью цоликлона анти-d Супер (содержащего полные IgМ антитела)
- •2. Реакция агглютинации в присутствии высокомолекулярных субстанций с помощью цоликлона анти-д
- •Примерные вопросы для самоподготовки
- •Система гемостаза
- •Функции системы гемостаза
- •Плазменнные факторы свертывания крови
- •Тромбоциты
- •Тромбоцитарные факторы
- •Функции тромбоцитов
- •Участие эритроцитов в свертывании крови
- •Эритроцитарные факторы
- •Лейкоцитарные факторы
- •Тканевые факторы
- •Сосудисто-тромбоцитарный гемостаз
- •Коагуляционный гемостаз
- •I фаза образование протромбиназ
- •II фаза образование тромбина (тромбинообразование)
- •III фаза – превращение фибриногена в фибрин
- •Послефаза /посткоагуляционная фаза/
- •Фибринолиз
- •Причины поддержания жидкого состояния крови
- •Латентное микросвертывание крови
- •Причины внутрисосудистого тромбообразования
- •Регуляция свертывания крови
- •Система гемостаза и иммунная система
- •Система гемостаза и потенциалы возбудимых тканей
- •Система регуляции агрегатного состояния крови и тромбогеморрагический синдром
- •Основные компоненты системы раск
- •Возрастные изменения гемостаза
- •Самостоятельная работа студентов
- •Работа 1. Определение времени свёртывания крови по Ли-Уайту
- •Работа 2. Получение стабилизированной плазмы для проведения коагуляционных проб (в работах 3, 4, 5, 6)
- •Работа 3. Определение времени рекальцификации плазмы
- •Работа 4. Определение протромбинового времени
- •Работа 5. Определение тромбинового времени
- •Работа 6. Определение уровня фибриногена по Рутберг
- •Работа 7. Определение длительности кровотечения по Дьюку
- •Работа 8. Исследование ретракции кровяного сгустка по Матиссу
- •Работа 9. Определение свёртывания крови по Сухареву
- •Работа 10. Определение спонтанного фибринолиза и ретракции по Кузнику
- •Примерные вопросы для самоподготовки
- •Средства инфузинно-трансфузионной терапии
- •Кристаллоидные и коллоидные растворы
- •Современные автоматизированные методики исследования состава и свойств крови Фотогемометрия
- •Цитофотометрия
- •Электронно-автоматический метод
- •Тромбоэластография
- •Перечень основных клинико-физиологических методик, подлежащих освоению студентами на уровне знаний по разделу "Кровь"
- •Вопросы для тестового контроля занятие 1
- •Дополнительные вопросы тестового контроля знаний для студентов педиатрического отделения
- •Занятие 2
- •Занятие 4
- •Ответы на вопросы тестового контроля знаний
- •Ответы на дополнительные вопросы тестового контроля знаний для студентов педиатрического отделения
Базофилы
Базофилы – это самая малочисленная группа лейкоцитов. В периферической крови их содержится 0,5-1% (22-95 в 1мкл). В базофилах имеется мелкая и крупная зернистость, причем последняя окрашивается основными красками, отсюда и название этих лейкоцитов. В различных тканях и органах локализованы тучные клетки (тканевые базофилы).
В базофилах и тучных клетках содержатся многие биологически активные вещества. Эти вещества делят на 2 группы: 1 – постоянно присутствующие в клетке и выделяемые в покое (гистамин, гепарин, серотонин, эозинофильный хемотаксический фактор) и 2 – образующиеся и выделяемые в период сенсибилизации, при взаимодействии базофилов и тучных клеток с антигеном (медленно реагирующее вещество анафилаксии; фактор, активирующий тромбоциты; простагландины; нейтрофильный хемотаксический фактор). При локальном выделении этих факторов возникает аллергическое воспаление, а при выделении в общий кровоток – анафилактический шок, обусловленный резким снижением артериального давления.
Гепарин – основной антикоагулянт (он препятствует свертыванию крови). Он ингибирует расщепление фибрина, гистаминазу (фермент, разрушающий гистамин), фагоцитоз и пролиферативные процессы.
Гистамин – повышает проницаемость тканей, расширяет артериолы, увеличивает число функционирующих капилляров, участвует в возникновении воспалительного отека.
Эозинофильный и нейтрофильный хемотаксические факторы способствуют движению эозинофилов и нейтрофилов к месту накопления базофилов.
В основе функционирования базофилов лежат 3 механизма: синтез и реабсорбция биологически активных веществ; образование гранул и дегрануляция – выделение этих активных веществ из базофилов с последующим развитием различных реакций, в частности, аллергических.
Участие базофилов и тучных клеток в аллергических реакциях – это главная их функция. Основным медиатором реакций гиперчувствительности является гистамин. На цитоплазматической мембране базофилов и тучных клеток имеются рецепторы для IgE, IgG, комплемента, гистамина (Н2-рецепторы). Наличие последних на тучных клетках имеет важное значение в механизме обратной связи, обеспечивающим самоограничение аллергической реакции немедленного типа. Когда антигены (аллергены) действуют на В-лимфоциты кожи, желудочно-кишечного тракта, легких, то образуется большое количество антител – иммуноглобулинов (JgE), которые, циркулируя в крови, связываются с соответствующими рецепторами названных клеток. В результате кооперирования 2-х молекул JgЕ с аллергеном в базофилах и тучных клетках происходит снижение уровня цАМФ и увеличение проницаемости мембраны для внеклеточных ионов кальция, которые необходимы для высвобождения гистамина и других медиаторов аллергической реакции. Биохимические сдвиги, происходящие в этих клетках, приводят к дестабилизации последних – наступает дегрануляция и высвобождение медиаторов. Выделению гистамина способствуют также лимфокины. Дегрануляция клеток и высвобождение из них медиаторов осуществляется также под влиянием иммунных комплексов, действие которых опосредуется путем активации комплемента, выработки анафилотоксинов и выделения катионных белков из нейтрофилов. Сам процесс дегрануляции – это изменение мембраны гранул, вытеснение их содержимого через поры мембраны клеток в окружающую их среду.
Медиаторы аллергической реакции вызывают повышение проницаемости сосудов и сокращение гладкой мускулатуры, индукцию хемотаксиса и активацию других клеток, принимающих участие в воспалении (эозинофилов, нейтрофилов, тромбоцитов), модуляцию высвобождения других медиаторов.
Быстрое выделение гистамина и других медиаторов клинически вызывает проявления реакции гиперчувствительности немедленного типа при бронхиальной астме, аллергическом рините и других заболеваниях.
В последнее время привлекает внимание участие базофилов и тучных клеток в реакциях гиперчувствительности замедленного типа. При этом клеточные инфильтраты могут включать моноциты, макрофаги, нейтрофилы, базофилы в различных соотношениях. Такие реакции наблюдаются при контакте с паразитами, белковыми и тканевыми аллергенами, при вирусных инфекциях и опухолях. Клинически у больных отмечаются эритематозные пятна, инфильтраты.
Базофилы могут вовлекаться в иммуноопосредованные процессы и через систему комплемента. Известно, что медиатором анафилактического шока являются анафилотоксины. Они образуются в процессе активации компонентов С3а, С5а системы комплемента. При их взаимодействии с соответствующими рецепторами на поверхности базофилов последние активируются, образуются анафилотоксины и под их влиянием высвобождаются гистамин, лейкотриены (С4 и Д4) – активные факторы медленно действующего вещества анафилаксии. Этот комплементзависимый механизм активации базофилов и тучных клеток может иметь значение в патогенезе воспаления, аллергических реакций, не связанных с накоплением IgG и IgE – реагиновых антител, псевдоаллергических реакциях, вызываемых различными химическими и биологическими агентами.
Базофилы и тучные клетки играют важную роль в системе местного иммунитета кожи и слизистых оболочек. Известно, что малые дозы антигена стимулируют выработку IgE – антител, которые в месте образования быстро фиксируются к рецепторам базофилов и тучных клеток и, таким образом, обеспечивают локальную иммунную защиту. Если же антиген действует повторно, то из сенсибилизированных тучных клеток высвобождаются вещества, активирующие локальную микроциркуляцию путем привлечения в это место различных защитных факторов плазмы и клеток. Следовательно, тучные клетки в комплексе с IgE участвуют в поддержании местного иммунитета кожи и слизистых оболочек, в профилактике генерализации инфекционного процесса.
Базофилы и тучные клетки вместе с эозинофилами участвуют в защите организма от гельминтных инвазий.
Базофилы и тучные клетки принимают участие в трофике тканей в норме и патологии, в интегральной деятельности иммунной системы. Это обеспечивается способностью этих клеток к миграции и хемотаксису, которую усиливают калликреин плазмы, компоненты комплемента, но основной стимулятор – это лимфокин, продуцируемый сенсибилизированными Т-лимфоцитами.
Базофилы и тучные клетки также способны к фагоцитозу различных частиц, сенсибилизированных эритроцитов, лейкоцитов и др. с формированием фагосомы. Но фагоцитоз остается незавершенным.
В процессе дегрануляции из базофилов и тучных клеток выделяются вещества (фактор, активирующий тромбоциты, вазоактивные амины, калликреин, простагландины, гепарин), которые влияют на систему гемокоагуляции.
Учитывая содержащиеся и синтезируемые при сенсибилизации биологически активные соединения и эффекты их действий, а также физиологические свойства самих клеток, можно суммировать функции базофилов и тучных клеток.
1 – участие в формировании аллергических реакций;
2 – очищение среды от биологически активных веществ путем их поглощения;
3 – синтез и выделение в среду биологически активных веществ;
4 – регуляция микроциркуляции;
5 – регуляция проницаемости капилляров;
6 – участие в процессах пролиферации клеток тканей;
7 – участие в механизмах иммунных реакций, в том числе в реакциях клеточного иммунитета совместно с макрофагами и нейтрофилами-фагоцитами.
8 участие в свёртывании крови.
Кинетика базофилов и тучных клеток. Созревают в костном мозге 1,5-2,5 сутки. Несколько суток депонируются в синусах костного мозга и через 3-7 дней поступают в кровь, где находятся короткое время (8,3 ч). После дегрануляции они погибают. Тучные клетки происходят из гемопоэтических клеток, имеют общую клетку-предшественницу с базофилами. В норме тучные клетки в периферической крови не определяются, в костном мозге могут быть единичные клетки. Они определяются в соединительной ткани вблизи эпителиальных клеток, в окружности кровеносных сосудов, в серозных полостях. Длительность их жизни дольше базофилов и при отсутствии физиологических и патологических стимуляторов может доходить до 2 лет.
Регуляция продукции. Базофилопоэз стимулируют базофилопоэтины и эстрогены, угнетают стероидные гормоны, тироксин. Базофилия наблюдается во время регенеративной (заключительной) фазы острого воспаления, при аллергических реакциях. При стрессовых ситуациях, хроническом воспалении число базофилов увеличивается в небольшой степени.