- •Идз 1. Кратные интегралы Задача 1. Построить область интегрирования. Изменить порядок интегрирования.
- •Задача 2. Построить область интегрирования, вычислить двойной интеграл.
- •Задача 3. Построить область интегрирования. Вычислить интеграл.
- •Задача 4. Построить область интегрирования. Вычислить интеграл.
- •Задача 5. Найти площадь фигуры, ограниченной данными линиями (7).
- •Задача 6. Пластинка d задана неравенствами, - поверхностная плотность. Построить изображение пластины. Найти массу пластинки. (9)
- •Задача 7. Найти объем тела, заданного ограничивающими его поверхностями. (11)
- •Задача 8. Найти объем тела, заданного ограничивающими его поверхностями. (13)
- •Задача 9. Тело V задано ограничивающими его поверхностями, - плотность. Найти массу тела. (16)
- •Идз 2. Скалярные и векторные поля. Криволинейные интегралы Задача 1.
- •Задача 2. Найти векторные линии в векторном поле . Построить векторные линии в окрестности начала координат.
- •Задача 3. Вычислить данные криволинейные интегралы первого рода. Построить кривую l, указать направление интегрирования.
- •Задача 4. Вычислить данные криволинейные интегралы первого рода. Построить кривую l
- •Задача 5. Найти криволинейный интеграл второго рода векторного поля вдоль контура (в направлении, соответствующем возрастанию параметра ). Сделать чертеж контура.
- •Задача 6. Найти модуль циркуляции векторного поля вдоль контура .
- •Задача 7. С использованием криволинейных интегралов решить следующие задачи. Сделать иллюстрацию.
- •Идз 3. Поверхностные интегралы и теория поля Задача 1. Найти поверхностный интеграл первого рода по поверхности s, где s - часть плоскости (p), отсеченная координатными плоскостями (257 - 2)
- •Задача 2. Вычислить массу полусферы , если поверхностная плотность в каждой ее точке
- •Задача 4. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя). Сделать чертеж поверхности
- •Задача 7. Найти наибольшую плотность циркуляции векторного поля в точке (273)
- •Задача 8. Проверить является ли векторное поле потенциальным и соленоидальным. В случае потенциальности поля найти его потенциал.
- •Задача 2. Для данной функции найти изолированные особые точки и определить их тип
- •Задача 3. Вычислить интеграл, построить область интегрирования и отметить особые точки подынтегральной функции.
- •Задача 4. Найти оригинал по заданному изображению
- •Задача 5. Решить дифференциальные уравнения с начальными условиями (задача Коши) операционным методом.
- •Образец титульного листа
- •Индивидуальное домашнее задание по высшей математике Название
Задача 6. Пластинка d задана неравенствами, - поверхностная плотность. Построить изображение пластины. Найти массу пластинки. (9)
6.1.
|
6.2.
|
6.3.
|
6.4.
|
6.5.
|
6.6.
|
6.7.
|
6.8.
|
6.9.
|
6.10.
|
6.11.
|
6.12.
|
6.13.
|
6.14.
|
6.15.
|
6.16.
|
6.17.
|
6.18.
|
6.19.
|
6.20.
|
6.21.
|
6.22.
|
6.23.
|
6.24.
|
6.25.
|
6.26.
|
6.27.
|
6.28.
|
6.29.
|
6.30.
|
6.31.
Задача 7. Найти объем тела, заданного ограничивающими его поверхностями. (11)
7.1.
|
7.2.
|
7.3.
|
7.4.
|
7.5.
|
7.6.
|
7.7.
|
7.8.
|
7.9.
|
7.10.
|
7.11.
|
7.12.
|
7.13.
|
7.14.
|
7.15.
|
7.16.
|
7.17.
|
7.18.
|
7.19.
|
7.20.
|
7.21.
|
7.22.
|
7.23.
|
7.24.
|
7.25.
|
7.26.
|
7.27.
|
7.28.
|
7.29.
|
7.30.
|
7.31.
Задача 8. Найти объем тела, заданного ограничивающими его поверхностями. (13)
8.1.
|
8.2.
|
8.3.
|
8.4.
|
8.5.
|
8.6.
|
8.7.
|
8.8.
|
8.9.
|
8.10.
|
8.11.
|
8.12.
|
8.13.
|
8.14.
|
8.15.
|
8.16.
|
8.17.
|
8.18.
|
8.19.
|
8.20.
|
8.21.
|
8.22.
|
8.23.
|
8.24.
|
8.25.
|
8.26.
|
8.27.
|
8.28.
|
8.29.
|
8.30.
|
8.31.
Задача 9. Тело V задано ограничивающими его поверхностями, - плотность. Найти массу тела. (16)
9.1.
|
9.2.
|
9.3.
|
9.4.
|
9.5.
|
9.6.
|
9.7.
|
9.8.
|
9.9.
|
9.10.
|
9.11.
|
9.12.
|
9.13.
|
9.14.
|
9.15.
|
9.16.
|
9.17.
|
9.18.
|
9.19.
|
9.20.
|
9.21.
|
9.22.
|
9.23.
|
9.24.
|
9.25.
|
9.26.
|
9.27.
|
9.28.
|
9.29.
|
9.30.
|
9.31.
Идз 2. Скалярные и векторные поля. Криволинейные интегралы Задача 1.
Варианты 1 -14. Найти
производную скалярного поля
в точке
по направлению нормали к поверхности
,
образующей острый угол с положительным
направлением оси
.
Сделать чертеж.
1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.
1.11.
1.12.
1.13.
1.14.
Варианты 15 - 30.
Найти производную скалярного поля
в точке
по направлению вектора
и градиент этого скалярного поля в точке
.
Сделать чертеж
1.15.
|
1.16.
|
1.17.
|
1.18.
|
1.19.
|
1.20.
|
1.21.
|
1.22.
|
1.23.
|
1.24.
|
1.25.
|
1.26.
|
1.27.
|
1.28.
|
1.29.
|
1.30.
|
1.31.
