
- •1.Межгосударственная система стандартизации
- •2. Основные понятия и определения в области метрологии
- •3. Общие вопросы измерений.
- •4. Основные понятия и погрешности измерений.
- •5. Методы оценки погрешности измерений
- •6. Способы обнаружения и устранения систематической погрешности.
- •8. Вероятностное описание случайной погрешности
- •9. Методика статистической обработки результатов наблюдений.
- •10. Суммирование погрешностей.
- •12. Грубые погрешности и методы их исключения.
- •13. Погрешность и неопределенность.
- •14. Числовые параметры законов распределения.
- •15. Основные законы распределения.
- •16. Точечные оценки законов распределения.
- •17. Интервальные оценки законов распределения.
- •18. Средства измерений.
- •19. Эталоны единиц электрических единиц.
- •20. Гос. Система обеспечения единства измерений. Воспроизведение и передача размеров единиц фв.
- •21. Поверочные схемы.
- •22. Способы поверки средств измерений.
- •23. Операции, проводимые при поверке.
- •24. Поверка меры.
- •25. Метрологические характеристики средств измерений и их нормирование. Гост 8.009-84.
- •27. Шкалы измерений
- •28. Измерительные сигналы, их классификация.
- •29. Классификация помех.
- •30. Математические модели элементарных измерительных сигналов.
- •31 Математические модели сложных измерительных сигналов.
- •32. Модулированные сигналы ам чм фм аим чим шим.
- •33. Квантование и дискретизация измерительных сигналов.
- •34 Интегральные параметры периодического сигнала
- •35. Метрологическая надежность.
- •36. Свойства метрологической надежности.
- •37. Основы стандартизации.
- •38. Методы стандартизации
- •39. Нормативные документы
- •40 Нормативные документы по стандартизации в рф
- •41. Виды стандартов.
- •42. Организация работ по стандартизации.
- •43. Сертификация. Термины и определения в области сертификации.
- •44. Обязательная и добровольная сертификация.
- •45. Схемы сертификации. Порядок проведения сертификации продукции.
- •46 Порядок проведения сертификации продукции
- •47. Сертиф-я систем качества.
- •48 Международные организации по сертификации исо мэк
29. Классификация помех.
Помеха – это сигнал, однородный с измерительным и действующий одновременно с ним. По месту воздействия:
- внутренние и внешние.
Причиной воздействия внешних помех явл-ся природные процессы и работа др. тех устройств, внутренние обусловлены процессами, происходящими при работе самого ср-ва измерения.
Различают помехи общего вида(синфазные) и нормального(последовательные) вида, в зав-ти от включения в экв схемах СИ.
Источники помех общего вида включены м\у общими точками(корпусами) схем СИ.
Источники помех норм. вида включены последовательно
во входную цепь СИ.
По виду частотного спектра – белые и розовые шумы.
Белый шум равномерно распределен по всему частному диапазону, розовый – постоянная спектральная плотность приходится на декаду частоты.
По осн свойствам помехи делят:
1. флуктуационные
2. сосредоточенные
3. импульсные
флуктуационные помехи представляют собой хаотичное изменение во времени сигнала однородным с измеряемым в к-либо месте СИ.
тепловой шум(Джонсона) по свойствам близок белому шуму.
дробовый обусл-лен движением электронов белого шума
флуннер-шум(резистора) – в чистом виде розовый шум.
Влияние флуктуационной помехи уменьшается при усреднении суммы измерительного сигнала и помехи. Макс уменьшение влияния флуктуационной помехи на результат измерения возможно в том случае, когда спектральная плотность помехи постоянна в пределах полосы пропускания. т.е. помеха имеет характер белого шума.
Сосредоточенные помехи – помехи, осн часть мощности которых сосредоточена на отдельных участках диапазонов частот, меньше полосы пропускания СИ.
Импульсные помехи - это регулярная или хаотическая последовательность импульсных сигналов однородных с измерит сигналом Источником таких помех явл-ся цифровые или коммутирующие элем-ты СИ или работающих рядом приборов.
Импульсные и сосредоточенные помехи называют наводками. Многие из электрических помех можно устранить путем экранирования, заземления средств измерения, применения спец фильтров.
30. Математические модели элементарных измерительных сигналов.
Это сигналы, которые описываются sin, 1-ной, -функцией.
Постоянный сигналы это самый простой из элементарных сигналов описываем уроавнением y=A , где A – единственный параметр сигнала.(рис временной(а) и частотной(б) модели пост сигнала)
Единичная ф-ия Хевисайда описывается след уравненеим
1(t-tо)=0 при t<to или 1(t-tо)=1 при t>=to, имеет один параметр tо. Рисуй временную и частотную диаграммы.
-функция описывается уравнением (t-t0)=0 при t не=to или бесконечности оо при t=to
Единичная -функция с единичн соотношенеим
1(t-tо)=∫ (t-tо)dt, (0;t)
(t-tо)=d[1(t-tо)]/dt
Cинусоид-ый сигнал Y(t)=Yм*sin(wt+φ) = Yм*sin(2пt/T+φ)
Параметрами явл-ся: Yм, w, Т, φ – рисуй!
31 Математические модели сложных измерительных сигналов.
Прямоугольные импульсы описываются уравнением
Y(t)=Yм[1(t-tо)- 1(t-tо-т)], т.е. как разность 2-х единичных ф-ий, сдвинутых во времени на величину т(длительность импульсов) – 3 рис.
Последовательность прям импульсов – это сумма одиночных импульсов, для ее описания необходимо знать 3-и параметра: Yм, Т, т (т – «тау»)
Отношение периода к длительности прямоугольного импульса наз-ся скважностью, а обратная величина - коэффициентом заполнения. При скважности равной 2 импульс наз меандром.
В реальных импульсах время изменения сигнала от нулевых до амплитудного значения и обратно всегда имеет конечную длительность, т.е. фронт тФ и спад тС - рисуй!
Сигналы с линейными участками:
а) линейно-знакопеременные
б) диполярные линейно изменяющиеся–пилообразные – рис