- •Предисловие
- •I. Элементы теории вероятностей
- •1.1. Случайные величины. Вероятность случайного события
- •1.2. Закон распределения дискретной случайной величины
- •1.3. Интегральная функция распределения
- •1.4. Дифференциальная функция распределения
- •1.5. Равномерное распределение непрерывной случайной величины
- •1.6. Числовые характеристики случайных величин
- •1.7. Нормальный закон распределения вероятностей непрерывной случайной величины
- •II. Элементы математической статистики
- •1. Предмет и задачи математической статистики
- •2. Вариационные ряды распределения
- •Яйценоскость кур-несушек
- •Интервальный ряд распределения яйценоскости
- •3. Средние величины
- •3.1. Средняя арифметическая
- •Удой коровы
- •3.2. Мода и медиана
- •Приплод норок
- •4. Показатели вариации
- •Поголовье бычков, поступивших на мясокомбинат
- •5. Показатели распределения
- •6.Точность и надежность оценки. Доверительные интервалы
- •7.1. Статистические гипотезы. Нулевая и альтернативная гипотезы
- •7.2. Ошибки первого и второго рода
- •7.3. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
- •7.4. Критерий 2 как критерий согласия
- •7.5. Критерии достоверности выборочных показателей
- •Конверсия корма на 1 кг прироста живой массы высокопродуктивных бройлеров при разных системах содержания
- •8. Дисперсионный анализ
- •Однофакторный дисперсионный анализ.
- •Показатели, выводимые с помощью надстройки Анализ данных
- •9. Элементы корреляционного анализа
- •9.1. Статистическая зависимость случайных величин. Уравнения регрессии.
- •9.2. Корреляционная зависимость. Коэффициент корреляции.
- •9.3. Надежность зависимости.
- •Решение с помощью функции линейн
- •Название показателей, выводимых с помощью функции линейн
- •Название показателей, выводимых с помощью надстройки Анализ данных
- •III. Задание к расчетно-графической работе по математической статистике на тему «Статистический анализ вариационных рядов распределения (на примере настрига шерсти овец и длины волоса шерсти)»
- •План работы
- •Образец оформления
- •Интервальные ряды распределения. Графическое представлен данных
- •Графическое представление данных
- •II. Статистические оценки параметров распределения. Точечные оценки
- •III. Интервальные оценки. Доверительные интервалы. Ошибки выборочной средней.
- •IV. Статистические гипотезы. Проверка гипотезы о соответствии рядов распределения настрига и длины волоса шерсти нормальному закону распределения
- •VI. Корреляционный анализ. Регрессия. Уравнение линии регрессии.
1.2. Закон распределения дискретной случайной величины
Законом распределения дискретной случайной величины называют соответствие между ее возможными значениями и вероятностями их появления. Закон распределения можно задать таблично, аналитически (в виде формулы) и графически (в виде многоугольника распределения).
Табличное задание закона распределения:
-
возможные значения случайной величины;
-
вероятности появления случайной
величины.
Аналитическое задание закона распределения:
Биномиальное распределение, определяемое законом Бернулли
k = 0, 1, 2, …, n – количество возможных появлений событий
q = 1-p – вероятность не появления событий.
Распределение Пуассона, определяемое асимптотической формулой Пуассона:
Где
-
интенсивность потока событий.
Графическое задание закона распределения представлено на рис. 1
Рис. 1 Полигон распределения дискретной случайной величины.
Способ описания распределения случайной величины в виде таблицы, в виде формулы или графически применим только для дискретных случайных величин.
1.3. Интегральная функция распределения
Интегральная функция распределения позволяет задать как дискретную, так и непрерывную случайную величину.
Интегральная функция распределения (ИФР) – это функция F(x), определяющая для каждого возможного значения x вероятность того, что случайная величина X примет значение меньшее x, т. е.
Геометрический смысл интегральной функции распределения – это вероятность того, что случайная величина X примет значение, которое на числовой оси лежит левее точки x.
Свойства интегральной функции распределения:
1. Значения интегральной функции распределения принадлежат отрезку
[0;1]
:
.
2. Вероятность того, что случайная величина X примет значение, заключенной в интервале (a, b), равна приращению интегральной функции распределения на этом интервале
3. Если все возможные значения x случайной величины принадлежат интервалу (a, b), то
,
если
,
если
График ИФР непрерывной случайной величины представлен на рис. 2
Рис. 2 График ИФР непрерывной случайной величины
График ИФР дискретной случайной величины представлен на рис. 3
Рис. 3 График ИФР дискретной случайной величины
1.4. Дифференциальная функция распределения
Для описания распределения вероятностей непрерывной случайной величины используется дифференциальная функция распределения.
Дифференциальная функция распределения (ДФР) (или плотность вероятности) – это первая производная от интегральной функции.
Интегральная функция распределения является первообразной для дифференциальной функции распределения. Тогда
Вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (a, b), равна определенному интегралу от дифференциальной функции, взятому в пределах от a до b:
Геометрический смысл ДФР состоит в следующем: вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (a, b), равна площади криволинейной трапеции, ограниченной осью x, кривой распределения f(x) и прямыми x = a и x = b (рис. 4).
Рис. 4 График дифференциальной функции распределения принято называть кривой распределения.
Свойства дифференциальной функции распределения:
1.
Дифференциальная функция распределения
неотрицательна, т. е.
2. Если все возможные значения случайной величины принадлежат интервалу (a, b), то
Дифференциальную функцию распределения часто называют законом распределения вероятностей непрерывных случайных величин.
При решении прикладных задач сталкиваются с различными законами распределения вероятностей непрерывных случайных величин. Часто встречаются законы равномерного и нормального распределения.
