
- •Предисловие
- •I. Элементы теории вероятностей
- •1.1. Случайные величины. Вероятность случайного события
- •1.2. Закон распределения дискретной случайной величины
- •1.3. Интегральная функция распределения
- •1.4. Дифференциальная функция распределения
- •1.5. Равномерное распределение непрерывной случайной величины
- •1.6. Числовые характеристики случайных величин
- •1.7. Нормальный закон распределения вероятностей непрерывной случайной величины
- •II. Элементы математической статистики
- •1. Предмет и задачи математической статистики
- •2. Вариационные ряды распределения
- •Яйценоскость кур-несушек
- •Интервальный ряд распределения яйценоскости
- •3. Средние величины
- •3.1. Средняя арифметическая
- •Удой коровы
- •3.2. Мода и медиана
- •Приплод норок
- •4. Показатели вариации
- •Поголовье бычков, поступивших на мясокомбинат
- •5. Показатели распределения
- •6.Точность и надежность оценки. Доверительные интервалы
- •7.1. Статистические гипотезы. Нулевая и альтернативная гипотезы
- •7.2. Ошибки первого и второго рода
- •7.3. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
- •7.4. Критерий 2 как критерий согласия
- •7.5. Критерии достоверности выборочных показателей
- •Конверсия корма на 1 кг прироста живой массы высокопродуктивных бройлеров при разных системах содержания
- •8. Дисперсионный анализ
- •Однофакторный дисперсионный анализ.
- •Показатели, выводимые с помощью надстройки Анализ данных
- •9. Элементы корреляционного анализа
- •9.1. Статистическая зависимость случайных величин. Уравнения регрессии.
- •9.2. Корреляционная зависимость. Коэффициент корреляции.
- •9.3. Надежность зависимости.
- •Решение с помощью функции линейн
- •Название показателей, выводимых с помощью функции линейн
- •Название показателей, выводимых с помощью надстройки Анализ данных
- •III. Задание к расчетно-графической работе по математической статистике на тему «Статистический анализ вариационных рядов распределения (на примере настрига шерсти овец и длины волоса шерсти)»
- •План работы
- •Образец оформления
- •Интервальные ряды распределения. Графическое представлен данных
- •Графическое представление данных
- •II. Статистические оценки параметров распределения. Точечные оценки
- •III. Интервальные оценки. Доверительные интервалы. Ошибки выборочной средней.
- •IV. Статистические гипотезы. Проверка гипотезы о соответствии рядов распределения настрига и длины волоса шерсти нормальному закону распределения
- •VI. Корреляционный анализ. Регрессия. Уравнение линии регрессии.
9.2. Корреляционная зависимость. Коэффициент корреляции.
Зависимость между значениями одной случайной величины и условным средним значением другой случайной величины носит название корреляционной (от англ. correlation - согласование, связь, взаимосвязь, соотношение, взаимозависимость); термин впервые введен Гальтоном в 1888г.
Парный коэффициент корреляции Пирсона (1896 г.) изменяется в пределах от -1 до +1. Значение 0,00 интерпретируется как отсутствие корреляции. Корреляция определяет степень, с которой значения двух переменных пропорциональны друг другу.
Рабочие формулы коэффициентов корреляции применяют с учетом того, с какой выборкой (большей или малой) мы имеем дело.
Например, для малых выборок удобнее всего пользоваться следующей формулой:
(
или
),
где
и
,
где х-варианты первого признака;
у-варианты второго признака; n-число наблюдений в выборке.
Вспомогательная таблица для расчетов коэффициента корреляции.
№ |
X |
Y |
XY |
X2 |
Y2 |
1 |
|
|
|
|
|
2 |
|
|
|
|
|
… |
|
|
|
|
|
|
= |
= |
= |
= |
= |
Коэффициент корреляции, возведенный в квадрат, называется коэффициентом детерминации r2. Он показывает долю изменений, которые вызваны факторным признаком. Коэффициент детерминации r2 является прямым способом выражения зависимости одного признака от другого. Если известно, что У находится в причинной связи с Х, то r2 – это доля вариации У, обусловленная влиянием Х.
Для
изучения корреляционных связей большое
значение имеет коэффициент регрессии
,
который показывает, насколько в среднем
изменяется признак (Х), если коррелирующий
с ним признак (У) изменяется на определенную
величину.
Формула для расчета коэффициента имеет вид:
;
Корреляционные зависимости наблюдаются между очень многими признаками организмов – морфологическими, физиологическими, а также между различными биологическими процессами. Различают положительную и отрицательную корреляции. При положительной корреляции с увеличением одного признака увеличивается и другой. Например, с увеличением живой массы коров первотёлок возрастает и удой; чем выше процент жира в молоке, тем выше и процент белка в нём. При отрицательной корреляции с увеличением удоя у коров снижается жирность молока; куры с высокой яйценоскостью имеют более мелкие яйца.
В зоотехнической и ветеринарной практике изучение корреляционной зависимости имеет большое значение. Так, например, для животновода очень важно знать, какова связь между средним удоем за лактацию и процентом жира в молоке, иначе говоря, дают ли более высокоудойные коровы молоко с повышенным содержанием жира или, наоборот, с пониженным и насколько часто встречаются исключения из той или другой зависимости. Или другой пример: из-за отрицательной корреляционной зависимости между высокой молочностью и способностью к откорму невозможно выведение породы, сочетающую высокую молочную продуктивность и высокие мясные качества; между устойчивостью к эймериозу у кур и массой тела существует положительная корреляция, поэтому, чем более упитанные куры, тем менее они предрасположены к заболеванию.