
- •Предисловие
- •I. Элементы теории вероятностей
- •1.1. Случайные величины. Вероятность случайного события
- •1.2. Закон распределения дискретной случайной величины
- •1.3. Интегральная функция распределения
- •1.4. Дифференциальная функция распределения
- •1.5. Равномерное распределение непрерывной случайной величины
- •1.6. Числовые характеристики случайных величин
- •1.7. Нормальный закон распределения вероятностей непрерывной случайной величины
- •II. Элементы математической статистики
- •1. Предмет и задачи математической статистики
- •2. Вариационные ряды распределения
- •Яйценоскость кур-несушек
- •Интервальный ряд распределения яйценоскости
- •3. Средние величины
- •3.1. Средняя арифметическая
- •Удой коровы
- •3.2. Мода и медиана
- •Приплод норок
- •4. Показатели вариации
- •Поголовье бычков, поступивших на мясокомбинат
- •5. Показатели распределения
- •6.Точность и надежность оценки. Доверительные интервалы
- •7.1. Статистические гипотезы. Нулевая и альтернативная гипотезы
- •7.2. Ошибки первого и второго рода
- •7.3. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
- •7.4. Критерий 2 как критерий согласия
- •7.5. Критерии достоверности выборочных показателей
- •Конверсия корма на 1 кг прироста живой массы высокопродуктивных бройлеров при разных системах содержания
- •8. Дисперсионный анализ
- •Однофакторный дисперсионный анализ.
- •Показатели, выводимые с помощью надстройки Анализ данных
- •9. Элементы корреляционного анализа
- •9.1. Статистическая зависимость случайных величин. Уравнения регрессии.
- •9.2. Корреляционная зависимость. Коэффициент корреляции.
- •9.3. Надежность зависимости.
- •Решение с помощью функции линейн
- •Название показателей, выводимых с помощью функции линейн
- •Название показателей, выводимых с помощью надстройки Анализ данных
- •III. Задание к расчетно-графической работе по математической статистике на тему «Статистический анализ вариационных рядов распределения (на примере настрига шерсти овец и длины волоса шерсти)»
- •План работы
- •Образец оформления
- •Интервальные ряды распределения. Графическое представлен данных
- •Графическое представление данных
- •II. Статистические оценки параметров распределения. Точечные оценки
- •III. Интервальные оценки. Доверительные интервалы. Ошибки выборочной средней.
- •IV. Статистические гипотезы. Проверка гипотезы о соответствии рядов распределения настрига и длины волоса шерсти нормальному закону распределения
- •VI. Корреляционный анализ. Регрессия. Уравнение линии регрессии.
Предисловие
Курс теории вероятностей и математической статистики входит в цикл фундаментальных дисциплин, изучение которых является обязательным для студентов сельскохозяйственных учебных заведений.
Одной из важнейших сфер приложения теории вероятностей и математической статистики является животноводство. Развитие современного животноводства сопровождается накоплением большого количества информации по многим вопросам генетики, селекции, продуктивности, здоровья животных, поведенческих функций и т.д. В задачу науки входят классификация, упорядочение и систематизация этих данных, их научный анализ. Подобный подход позволяет формулировать практические предложения, способствующие ускорению развития тех или иных отраслей животноводства, совершенствовать и создавать новые перспективные отрасли, прогнозировать развитие того или иного направления. В ветеринарии, дополнительно к перечисленным возможностям, использование научного анализа позволяет теоретически моделировать течение болезни или действия лечебных факторов и разрабатывать методы профилактики и лечения животных. Все это обуславливает широкое внедрение в зооинженерную и ветеринарную практику математических методов, в том числе математической статистики.
Основные теоретические положения математической статистики базируются на теории вероятностей. Основное отличие математической статистики от теории вероятностей в том, что в математической статистике рассматриваются не только действия над законами распределения и числовыми характеристиками, но и приближенные методы отыскания этих законов и характеристик по результатам экспериментов.
Цель данных учебно-методических указаний – помочь изучающим теорию вероятностей и математическую статистику в усвоении необходимых теоретических знаний и приобретении практических навыков для квалифицированного использования статистической информации в целях принятия правильных решений в вопросах прогнозирования.
I. Элементы теории вероятностей
1.1. Случайные величины. Вероятность случайного события
Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.
Обозначим: X, Y, Z – случайные величины
–
возможные
значения случайных величин.
Дискретной (прерывной) называют случайную величину, которая принимает отдельные возможные значения с определенными вероятностями.
Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Число возможных значений непрерывной случайной величины, независимо от величины промежутка, бесконечно.
Для задания дискретной случайной величины недостаточно перечислить все ее возможные значения, нужно указать еще и их вероятность.
Вероятность (Р) показывает степень возможности осуществления данного события, явления, результата.
,
где n
– общее число элементарных исходов
(результатов испытания), m
– число исходов, благоприятных случайному
событию.
Вероятность невозможного события равна нулю, достоверного — единице (100%). Вероятность любого события лежит в пределах от 0 до 1 - в зависимости от того, насколько это событие случайно.