- •2. Щелочные металлы
- •2.1. Историческая справка
- •2.2. Место щелочных металлов в Периодической системе химических элементов
- •2.3. Распространенность в природе
- •2.4. Физические свойства щелочных металлов
- •2.5. Химические свойства щелочных металлов
- •Взаимодействие с неметаллами
- •Взаимодействие с водой
- •Взаимодействие с кислотами
- •Взаимодействие с аммиаком
- •Взаимодействие с органическими веществами
- •Восстановление металлов из оксидов и солей
- •2.7. Оксиды щелочных металлов
- •Получение
- •2.8. Гидроксиды щелочных металлов Физические свойства
- •Химические свойства
- •Получение
- •Примеры решения задач
- •3. Бериллий, магний и щелочно-земельные металлы
- •3.1. Историческая справка
- •3.2. Место бериллия, магния и щелочно-земельных металлов в Периодической системе химических элементов
- •3.3. Распространенность в природе
- •.4. Физические свойства бериллия, магния и щелочно-земельных металлов
- •3.5. Химические свойства бериллия, магния и щелочно-земельных металлов
- •Взаимодействие с простыми веществами
- •3.7. Особенности химии бериллия
- •3.8. Оксид и гидроксид магния
- •3.9. Оксид и гидроксид кальция
- •3.10. Жесткость воды
- •3.11. Обнаружение щелочно-земельных металлов
- •3.12. Применение бериллия, магния и щелочно-земельных металлов и их соединений
- •Примеры решения задач
- •4. Алюминий
- •4.1. Историческая справка
- •4.2. Место алюминия в Периодической системе химических элементов д.И. Менделеева
- •4.3. Распространенность в природе
- •4.4. Физические свойства алюминия
- •4.5. Химические свойства алюминия
- •Взаимодействие с неметаллами
- •Взаимодействие с водой
- •Взаимодействие с кислотами
- •Взаимодействие со щелочами
- •Восстановление металлов из оксидов и солей
- •4.6. Оксид алюминия Физические свойства
- •Химические свойства
- •Получение
- •4.7. Гидроксид алюминия Физические свойства
- •Химические свойства
- •Получение
- •4.8. Применение алюминия и его соединений
- •5. Элементы триады железа – железо, кобальт, никель
- •5.1. Историческая справка
- •5.2. Место элементов в Периодической системе химических элементов д.И. Менделеева
- •5.3. Распространенность в природе
- •5.4. Физические свойства элементов триады железа
- •5.5. Химические свойства железа, кобальта и никеля
- •Взаимодействие с неметаллами
- •Взаимодействие с водой
- •Взаимодействие с кислотами
- •Взаимодействие со щелочами
- •Восстановительные свойства
- •Образование карбонилов
- •5.6. Соединения железа (II)
- •5.7. Соединения железа (III)
- •5.8. Соединения железа (VI)
- •5.9. Применение железа, кобальта и никеля и их соединений
- •Примеры решения задач
Взаимодействие со щелочами
Разбавленные растворы щелочей на металлы триады железа не действуют. Возможно только взаимодействие железа с щелочными расплавами сильных окислителей:
Fe + KClO3 + 2KOH = K2FeO4 + KCl + H2O.
Для кобальта и никеля взаимодействие с расплавами щелочей не характерно.
Восстановительные свойства
Железо, кобальт и никель вытесняют металлы, которые расположены правее в электрохимическом ряду напряжений их растворов солей:
Fe + SnCl2 = FeCl2 + Sn,
Ni + CuSO4 = NiSO4 + Cu.
Образование карбонилов
Для металлов триады железа характерно образование карбонилов, в которых железо, кобальт и никель имеют степень окисления, равную 0. Карбонилы железа и никеля получаются при обычном давлении и температуре 20–60 °С:
Fe + 5CO = Fe(CO)5,
Ni + 4CO = Ni(CO)4.
Карбонилы никеля образуются при давлении 2·107 – 3·107 Па и температуре 150–200 °С:
2Co + 8CO = Co2(CO)8.
5.6. Соединения железа (II)
Соединения железа со степень окисления железа +2 малоустойчивы и легко окисляются до производных железа (III).
Оксид железа (II) – порошок черного цвета, в мелкораздробленном состоянии воспламеняется. Кристаллизуется в структурном типе хлорида натрия (кубическая гранецентрированная решетка).
Проявляет преимущественно основные свойства. В воде не растворяется, легко растворяется в неокисляющих кислотах:
FeO + 2HCl = FeCl2 + H2O.
Проявляет восстановительные свойства:
3FeO + 10HNO3 = 3Fe(NO3)3 + NO + 5H2O.
Получается разложением оксалата железа (II) в атмосфере азота или без доступа воздуха:
FeC2O4·3H2O = FeO + 3H2O + CO2 + CO
или в процессе восстановления оксида железа (III) водородом или оксидом углерода (II):
Fe2O3 + H2 = 2FeO + H2O,
Fe2O3 + CO = 2FeO + CO2.
Гидроксид железа (II) Fe(OH)2 в свежеосажденном виде имеет серовато-зеленую окраску, в воде не растворяется, при температуре выше 150 °С разлагается, быстро темнеет вследствие окисления:
4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3.
Проявляет слабовыраженные амфотерные свойства с преобладанием основных, легко реагирует с неокисляющими кислотами:
Fe(OH)2 + 2HCl = FeCl2 + 2H2O.
Взаимодействует с концентрированными растворами щелочей при нагревании с образованием тетрагидроксоферрата (II):
Fe(OH)2 + 2NaOH = Na2[Fe(OH)4].
Проявляет восстановительные свойства, при взаимодействии с азотной или концентрированной серной кислотой образуются соли железа (III):
2Fe(OH)2 + 4H2SO4 = Fe2(SO4)3 + SO2 + 6H2O.
Получается при взаимодействии солей железа (II) с раствором щелочи в отсутствии кислорода воздуха:
FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4.
Соли железа (II). Железо (II) образует соли практически со всеми анионами. Обычно соли кристаллизуются в виде зеленых кристаллогидратов: Fe(NO3)2·6H2O, FeSO4·7H2O, FeBr2·6H2O, (NH4)2Fe(SO4)2·6H2O (соль Мора) и др. Растворы солей имеют бледно-зеленую окраску и, вследствие гидролиза, кислую среду:
Fe2+ + H2O = FeOH+ + H+.
Проявляют все свойства солей.
При стоянии на воздухе медленно окисляются растворенным кислородом до солей железа (III):
4FeCl2 + O2 + 2H2O = 4FeOHCl2.
Качественная реакция на катион Fe2+ – взаимодействие с гексацианоферратом (III) калия (красной кровяной солью) :
FeSO4 + K3[Fe(CN)6] = KFe[Fe(CN)6]↓ + K2SO4
Fe2+ + K+ + [Fe(CN)6]3- = KFe[Fe(CN)6]↓
в результате реакции образуется осадок синего цвета – гексацианоферрат (II) железа (III) - калия.
