
6_Консп_Эл_измер_и_приб
.docЛитература
1. Морозов А.Г. Электротехника, электроника и импульсная техника: Учеб. Пособие для инженерно-эконом. спец. вузов. – М.: Высш. Шк., 1987. -448с.
2. Электротехника и электроника: Учебник для сред. проф. образования/Б.И. Петленко, Ю.М. Иньков, А.В. Крашенинников и др.; Под ред. Б.И. Петленко. – М.; Издательский центр «Академия», 2003. – 320 с.
3. Яновский В.П. Учебное пособие по дисциплине «Электроника» для студентов специальности «Информационные системы и технологии (в экологии)» /В. П. Яновский. – Минск: МГЭУ им. А. Д. Сахарова, 2008. – 126 c.
Ямный В.Е. Основы автоматизации физического эксперимента: Курс лекций/ В.Е.Ямный, В.П.Яновский. – Мн.:БГУ, 2004. – 283 с.
Яновский В.П. Сборник задач и упражнений по дисциплине «Автоматизация эксперимента» /В. П. Яновский. – Минск: МГЭУ им. А. Д. Сахарова, 2010. – 93 c
Яновский В.П. Средства разработки аппаратного и программного обеспечения современных электронных систем.
Яновский В.П. Методические указания по дисциплине «Электротехника и промышленная электроника».
Электрические измерения и приборы.
Виды и методы электрических измерений. Основные понятия метрологии. Классификация погрешностей. Класс точности измерительных приборов.
Классификация электроизмерительных приборов. Измерения в цепях постоянного и переменного тока низкой частоты. Измерение тока. Измерения напряжения. Измерение мощности. Учет производства и потребления электрической энергии. Измерение параметров электрических цепей. Измерение неэлектрических величин электрическими методами. Использование цифровых приборов для измерения различных величин.
[1], с. 146 – 178; [2], с. 89 – 113.
6. Электрические измерения и электроизмерительные приборы
6.1. Виды и методы электрических измерений
6.1.1. Основные понятия метрологии
6.1.2. Погрешности измерений. Номинальные величины и постоянные приборов. Условные обозначения электроизмерительных приборов.
6.1.2.1. Погрешности измерений и электроизмерительных приборов.
Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано непостоянством параметров измерительной цепи (изменение температуры, индуктивности и т. п.), несовершенством конструкции измерительного механизма (наличие трения и т. д.) и влиянием внешних факторов (внешние магнитные и электрические поля, изменение температуры окружающей среды и т. д.).
Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерения:
ΔА = Аи─ Ад.
Если не учитывать значения измеряемой величины, то абсолютная погрешность не дает представления о степени точности измерения. Действительно, предположим, что абсолютная погрешность при измерении напряжения составляет DU = 1 В. Если указанная погрешность получена при измерении напряжения в 100 В, то измерение произведено с достаточной степенью точности. Если же погрешность DU = 1 В получена при измерении напряжения в 2 В, то степень точности недостаточна. Поэтому погрешность измерения принято оценивать не абсолютной, а относительной погрешностью.
Относительная погрешность измерения представляет собой отношение абсолютной погрешности к действительному значению измеряемой величины, выраженное в процентах:
. (7.3)
Поскольку действительное значение измеряемой величины при измерении не известно, для определения ΔU и γ можно воспользоваться классом точности прибора, представляющим собой обобщенную характеристику средств измерений, определяемую предельными допустимыми погрешностями.
Амперметры, вольтметры и ваттметры подразделяются на восемь классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор.
Под основной приведенной погрешностью прибора понимают абсолютную погрешность, выраженную в процентах по отношению к номинальной величине прибора:
(7.4)
Например, прибор класса точности 0,5 имеет γnp= ±0,5%. Погрешность γпр называется основной, так как она гарантирована в нормальных условиях, под которыми понимают температуру окружающей среды 20 °С, отсутствие внешних магнитных полей, соответствующее положение прибора и т. д. При других условиях возникают дополнительные погрешности. Погрешность γпр называется приведенной, потому что абсолютная погрешность независимо от значения измеряемой величины выражается в процентах по отношению к постоянной величине Аном.
Сравнивая (7.3) и (7.4), нетрудно получить
. (7.5)
Из (7.5) следует, что относительная погрешность измерения зависит от действительного значения измеряемой величины и возрастает при ее уменьшении. Вследствие этого надо стараться по возможности не пользоваться при измерении начальной частью шкалы прибора. В случае необходимости измерения малых величин следует применять другие приборы.
Пример 7.1. Номинальное напряжение вольтметра Uном= 150 В, класс точности 1,5. С помощью вольтметра измерено напряжение U = 50 В.
Определить абсолютную и относительную величину погрешности измерения, а также действительное значение напряжения.
Решение. Абсолютная погрешность измерения
.
Действительное значение напряжения может лежать в пределах
Uд = Uи ─ ΔU = (50 ± 2,25) В.
Относительная погрешность измерения
6.1.2.2. Номинальные величины приборов.
Наибольшие значения напряжений, токов и мощностей, которые могут быть измерены перечисленными приборами называются номинальными напряжениями Uном, токами Iном и мощностями Pном соответственно вольтметров, амперметров и ваттметров.
Номинальная мощность ваттметра в отличие от его номинальных напряжения и тока указывается не всегда. Для ваттметра номинальное напряжение представляет собой наибольшее напряжение, на которое может быть включена обмотка напряжения; номинальным током является наибольший ток, на который рассчитана последовательная обмотка.
Если номинальная мощность ваттметра не дана, то ее можно подсчитать по номинальному напряжению и току:
Pном= UномIном .
6.1.2.4. Постоянные приборов
Постоянная (цена деления) прибора представляет собой значение измеряемой величины, вызывающее отклонение подвижной части прибора на одно деление шкалы. Постоянные вольтметра, амперметра и ваттметра могут быть определены следующим образом:
CU = Uном / N, вольт на одно деление;
CI = Iном / N, ампер на одно деление;
CP = Uном Iном / N, ватт на одно деление;
где N — число делений шкалы соответственно вольтметра, амперметра и ваттметра.
Пример 7.2. Ваттметр имеет номинальное напряжение Uном= 150 В, номинальный ток: Iном = 5 А, число делений шкалы N = 150.
Определить номинальную мощность и постоянную ваттметра, а также его показание, если при измерении мощности подвижная часть отклонилась на N = 60 делений.
Решение. Номинальная мощность ваттметра Pном = Uном Iном = 150 · 5 = 750 Вт .
Постоянная ваттметра CP = Pном / N = 750/150 = 5 Вт/дел.
Показание ваттметра при отклонении его подвижной части на N = 60 делений
P = CP N = 5 · 60 = 300 Вт.
6.1.2.5. Чувствительность приборов
Под чувствительностью приборов понимают число делений шкалы, приходящееся на единицу измеряемой величины. Чувствительность вольтметра, амперметра и ваттметра может быть определена следующим образом:
SU = N /Uном , делений на вольт;
SI = N /Iном , делений на ампер;
,
делений на ватт.
Очевидно, что S = 1/С.
6.1.3. Классификация электроизмерительных приборов
6.2. Измерения в цепях постоянного и переменного тока низкой частоты
На практике применяют различные методы измерения электрических величин. Условно их можно разделить на прямые, косвенные и совокупные. Кроме того, они делятся на методы непосредственной оценки и на методы сравнения.
Наибольшее распространение получил метод непосредственной оценки. При этом числовое значение измеряемой величины определяется непосредственно по показаниям прибора, например величину тока по показаниям амперметра, напряжения – по показаниям вольтметра, сопротивления – по показаниям омметра и т.д. Это прямые измерения. Если измеряемая величина определяется по данным измерения других электрических величин путем вычисления этой величины, то такое измерение называется косвенным. Например, определение сопротивления по показаниям амперметра и вольтметра.
Метод сравнения широко используется для точных измерений. Он заключается в сравнении измеряемой величины с образцовой мерой такой же физической природы. Метод сравнения осуществляется с помощью мостовых или компенсационных схем.
6.2.1. Измерение тока
6.2.2. Измерения напряжения
6.2.3. Измерение мощности
6.2.4. Учет производства и потребления электрической энергии
6.2.5. Измерение параметров электрических цепей
6.3. Измерение неэлектрических величин электрическими методами
Характерной чертой измерительных приборов со стрелочным указателем является некоторая субъективность в измерениях при определении положения стрелки на шкале прибора. Цифровые измерительные приборы (ЦИП) с цифровыми индикаторами лишены этого недостатка. Они широко применяются для измерения частоты, интервалов времени, напряжения и т.д.
ЦИП преобразуют измеряемую величину в дискретные или квантовые значения, осуществляют цифровое кодирование и выдачу результатов измерений в цифровом виде. К преимуществам ЦИП можно отнести: достаточно широкий диапазон измеряемых величин с высокой точностью измерений, возможность представления результатов измерения в цифровом виде, запись их цифропечатающим устройством, а также ввод в ЦВМ с последующей обработкой получаемой информации и дальнейшим ее использованием.
6.4. Использование цифровых приборов для измерения различных величин