- •Электроника и микросхемотехника
- •Вступление
- •Лабораторная работа №1 исследование полупроводниковых диодов
- •Лабораторная схема
- •Домашнее задание
- •Задание к лабораторной работе
- •Подготовка измерительного стенда к измерению вольтамперных характеристик диодов и стабилитронов.
- •Исследование германиевого микросплавного импульсного диода типа гд503а.
- •Исследование кремниевого импульсного диода 1n4148.
- •Исследование кремниевого выпрямительного диода Шоттки типа sb1100.
- •Исследование кремниевого маломощного стабилитрона типа 1n5201.
- •Теоретические знания
- •Образование электронно-дырочного перехода
- •Вольтамперная характеристика р-п перехода
- •Полупроводниковые диоды
- •Влияние внешних факторов на вах реальных диодов
- •3.2 Классификация диодов
- •Параметры и применение исследуемых типов диодов
- •Контрольные вопросы
- •Лабораторная работа № 2 Исследование статических параметров биполярных транзисторов
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Подготовка измерительного стенда к измерению статических характеристик биполярного транзистора, включенного по схеме с оэ.
- •Исследование германиевого биполярного транзистора р-п-р типа мп41а.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора п-р-п типа вс547.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора п-р-п типа кт315е.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора Дарлингтона п-р-п типа кт3102е.
- •Теоретические знания
- •1 Структура и основные режимы работы биполярного транзистора
- •2 Работа транзистора в активном режиме
- •3 Сравнение различных схем включения транзистора
- •4 Модель Эберса-Молла
- •5 Малосигнальные параметры биполярного транзистора
- •6 Статические характеристики биполярного транзистора
- •7 Работа транзистора в импульсном режиме
- •8 Основные параметры биполярных транзисторов
- •9 Классификация биполярных транзисторов
- •10 Система обозначений биполярных транзисторов
- •Контрольные вопросы
- •Лабораторная работа № 3 Исследование статических параметров униполярных транзисторов
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •2. Исследование полевого транзистора управляемого р-п переходом и каналом п-типа кп303и.
- •3. Исследование мдп транзистора с изолированным затвором и индуцированным каналом р-типа кп301б.
- •4. Исследование мдп транзистора с изолированным затвором и встроенным каналом п-типа кп306а.
- •Теоретические знания
- •1 Структура и принцип работы униполярного транзистора с управляющим р-п переходом
- •2 Структура и принцип работы униполярного транзистора с изолированным затвором
- •4 Малосигнальные параметры униполярных транзисторов
- •5 Основные схемы включения униполярных транзисторов
- •6 Классификация униполярных транзисторов
- •7 Система обозначений униполярных транзисторов
- •Контрольные вопросы
- •Лабораторная работа № 4 Исследование rс-усилителя на биполярном р-п-р транзисторе
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •1 Выбор режима работы усилителя по постоянному току
- •Нагрузочная прямая строится следующим путем (только для линейной нагрузки):
- •2 Стабилизация работы транзисторного усилителя с помощью отрицательной обратной связи
- •3. Амплитудно - частотная характеристика усилителя
- •4 Эмиттерный повторитель напряжения
- •Если учитывать сопротивление базового делителя, то входное сопротивление приблизительно равняется
- •Контрольные вопросы
- •Лабораторная работа № 5 исследование rc–усилителя и истокового повторИтеля на полЕвом транзисторЕ
- •Лабораторные схемы
- •Домашнее задание
- •Завдання до лабораторної роботи
- •Теоретичні знання
- •1 Статические параметры полевых транзисторов
- •2 Схема включения полевого транзистора с общим истоком
- •3 Амплитудно - частотная характеристика усилителя
- •4 Истоковый повторитель напряжения
- •Выходное сопротивление истокового повторителя приблизительно равняется
- •Контрольные вопросы
- •Лабораторная работа № 6 исследование основных схем включения операционного усилителя
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •1 Идеальный операционный усилитель
- •2 Параметры реального операционного усилителя
- •3 Основные схемы включения операционных усилителей
- •4 Зависимость коэффициента усиления оу и фазового смещения от частоты
- •Контрольные вопросы
- •Лабораторная работа № 7 исследование основных типов мультивибраторов, применяемых в системах управления
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •1. Исследование мультивибратора на биполярных транзисторах
- •2. Исследование мультивибратора на операционном усилителе
- •Теоретические знания
- •1 Мультивибратор на биполярных транзисторах
- •2 Мультивибратор на основе операционного усилителя (оу)
- •Контрольные вопросы
- •Лабораторная работа № 8 исследование блокинг-генератора
- •Лабораторные схемы
- •Д омашнее задание
- •Задание к лабораторной работе
- •Исследование схемы блокинг-генератора, работающего в автоколебательном режиме.
- •Исследование схемы блокинг-генератора, работающего в ждущем режиме.
- •Теоретические знания
- •1 Общие сведения о блокинг-генераторах
- •2 Блокинг-генератор, работающий в автоколебательном режиме
- •3 Блокинг-генератор, работающий в ждущем режиме
- •Контрольные вопросы
- •Лабораторная работа № 9 исследование генераторов пилообразного напряжения
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Исследование схемы генератора пилообразного напряжения со следящей связью.
- •Исследование схемы генератора пилообразного напряжения на основе генератора стабильного тока.
- •Теоретические знания
- •1 Общие сведения о генераторах пилообразного напряжения
- •2 Формирователь глин со следящей связью
- •3 Формирователь глин на основе генератора стабильного тока
- •4 Автоколебательный глин на основе операционного усилителя
- •Контрольные вопросы
- •Лабораторная работа № 10 исследование типОвых логических функциональных элементов интегральных микросхем
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •Классификация интегральных микросхем
- •2 Условные обозначения и таблицы истинности основных логических элементов
- •3 Типовые схемы базовых логических элементов интегральных микросхем
- •4 Сравнение ттл и кмоп логических элементов
- •Контрольные вопросы
- •Литература
- •Содержание
Параметры и применение исследуемых типов диодов
Выпрямительные диоды.
Они предназначенные для преобразования переменного тока в постоянный пульсирующий ток при использовании схем однополупериодного, двухполупериодного или мостового выпрямления.
С
уществует
три основных схемы однофазных выпрямителей:
однополупериодная, двухполупериодная
и мостовая (рис.1.6). Однополупериодную
схему выпрямления применяют в основном
при небольших мощностях нагрузки, когда
не требуется малая амплитуда пульсаций
выходного напряжения. Частота пульсаций
выходного напряжения для этой схемы
равна частоте питающей сети переменного
тока. Выпрямление переменных напряжений
основано на несимметричности ВАХ диода.
Когда к диоду приложено прямое смещение,
то он полностью открыт и через него
протекает ток нагрузки. При обратном
смещении диод закрыт, и ток через нагрузку
не протекает. Поэтому частота пульсаций
выходного напряжения для этой схемы
равна частоте питающей сети переменного
тока. Для сглаживания пульсаций на
выходе выпрямителя устанавливают
сглаживающий конденсатор, который
заряжается при прямом смещении на диоде
и разряжается через нагрузку при закрытом
диоде.
Двухполупериодную схему используют при выходных мощностях до 100 Вт, и напряжениях до 500 В. В этой схеме один диод открывается при положительной полуволне входного напряжения, а другой − при отрицательной полуволне напряжения. Поэтому частота пульсаций выходного напряжения для этой схемы в два раза выше частоты питающей сети переменного тока. Уровень пульсаций выходного напряжения в такой схеме меньше, чем в предыдущей. Недостатком такой схемы является необходимость иметь две одинаковые обмотки трансформатора, а достоинством – наличие только двух выпрямляющих вентилей.
Мостовая схема выпрямления характеризуется хорошим использованием энергии трансформатора и используется при выпрямлении больших мощностей (до 1000 Вт). Обратное напряжение на выпрямляющих вентилях в этой схеме в 2 раза ниже, чем в предыдущих схемах выпрямления. Кроме того, для такой схемы необходима только одна обмотка трансформатор. Частота пульсаций выходного напряжения для этой схемы в два раза выше частоты питающей сети переменного тока.
Основными параметрами выпрямительных диодов являются:
Максимально допустимое значение постоянного (или импульсного) прямого тока, текущего через диод.
Постоянное прямое (или импульсное) падение напряжения на диоде.
Постоянный обратный ток диода.
Максимально допустимое значение постоянного (или импульсного) обратного напряжения, приложенного к диоду.
Максимально допустимая температура р-п перехода.
Импульсные диоды.
Такие диоды имеют малую длительность переходных процессов и предназначены для работы в импульсных режимах.
П
ри
подаче на диод прямоугольного импульса
напряжения прямого смещения ток через
диод устанавливается не сразу, так как
накопление инжектированных носителей
заряда в базе ограничивается временем
их диффузии. При длительном прохождении
прямого тока процесс инжекции неосновных
носителей заряда уравновешивается
процессом их рекомбинации. Возникает
некоторое установившееся состояние
(рис.1.7 а).
При переключении диода с прямого напряжение на обратное в начальный момент возникает достаточно большой обратный ток, ограниченный в основном последовательным сопротивлением базы диода. После чего начинается процесс рассасывания неосновных носителей заряда, накопленных в базе. Обратный ток начинает уменьшаться. С течением времени все накопленные в базе неосновные носители либо прорекомбинируют в базе, либо уйдут через р-п переход. Обратный ток достигнет своего стационарного значения тока насыщения.
Переходной процесс, в течение которого обратное сопротивление полупроводникового диода восстанавливается до постоянного значения после быстрого переключения с прямого направления на обратное, называют восстановлением обратного сопротивления диода. Соответственно для импульсного диода дополнительно вводится параметр время восстановления обратного напряжения tвос, равное интервалу времени от момента прохождения тока через ноль после переключения диода с заданного прямого тока в состояние заданного обратного напряжения до момента достижения обратным током заданного низкого значения.
При пропускании импульса тока в прямом направлении наблюдается выброс напряжения в первый момент после включения, что связано со значительным сопротивлением базы (рис.1.7 б). По мере инжекции неосновных носителей сопротивление базы уменьшится, что понизит прямое падение напряжения на диоде до стационарного значения. Переходной процесс, в течение которого прямое сопротивление диода устанавливается до постоянного значения после быстрого включения в прямом направлении, называют установлением прямого сопротивления диода. Соответственно следующим специфическим параметром импульсного диода является время установления прямого напряжения диода tуст.
Для повышения импульсных свойств диодов необходимо уменьшать время жизни неосновных носителей заряда, что достигается введением в полупроводниковый материал диода специальных примесей.
Диоды Шотки.
В этих диодах выпрямительные свойства основаны на использовании свойств перехода металл-полупроводник.
Существенное отличие диодов Шотки от диодов на основе р-п перехода в том, что в диодах Шотки токопрохождение осуществляется основными носителями заряда и не приводит к появлению процессов инжекции и последующего рассасывания носителей при переключении с прямого напряжения на обратное. Поэтому быстродействие диодов Шотки принципиально выше быстродействия диодов на р-п переходах. Диоды Шотки с успехом выполняют роль выпрямительных, импульсных и СВЧ диодов. Типовая конструкция диодов Шотки с двухслойной базой приведена на рис.1.8 а.
При включении
диодов Шотки в прямом направлении прямой
ток возникает благодаря движению
основных носителей заряда полупроводника
в мет
алл,
а носители другого знака (неосновные
для полупроводника) практически не
могут перейти из металла в полупроводник
из-за высокого для них потенциального
барьера на переходе металл-полупроводник.
Основными отличиями диода Шотки являются:
Меньшее падение прямого напряжения на диоде из-за меньшей высоты потенциального барьера для основных носителей заряда полупроводник.
Больший максимальный прямой ток, что связано с меньшим падением прямого напряжения и с лучшими условиями охлаждения перехода благодаря хорошему теплоотводу от выпрямляющего контакта Шотки.
Выпрямительные диоды Шотки выдерживают большие перегрузки по току по сравнению с диодами на р-п переходах.
Быстродействие диодов Шотки выше за счет отсутствия процессов инжекции неосновных носителей заряда.
Прямая ветвь АЧХ практически точно описывается выражением (1.7). Поэтому диоды Шотки можно использовать как быстродействующие логарифмические преобразователи.
Для диодов Шотки с тонкой базой обратная ветвь АЧХ имеет насыщение, а для диодов с толстой базой обратный ток пропорционален
(рис.1.8 б).
Стабилитроны.
Стабилитроны это диоды, предназначенные для стабилизации напряжения в заданных пределах. Принцип действия стабилитрона основан слабой зависимости обратного напряжения от протекающего через диод тока в режиме туннельного или лавинного пробоя (см. рис.1.4). До наступления пробоя стабилитроны имеют очень большое статическое сопротивление (порядка единиц МОм), после пробоя дифференциальное сопротивление стабилитрона составляет единицы – десятки Ом.
ВАХ и схема включения стабилитрона приведена на рис.1.9. Сопротивление балластного резистора R0 определяется из соотношения:
(1.11)
Стабилитроны характеризуются следующими параметрами:
Напряжением стабилизации UСт, которое может меняться от 3 до 200 В.
Отклонением напряжения стабилизации от заданного ΔUСт.
Минимальным и максимальным током стабилизации IСт min, IСт max.
Дифференциальным сопротивлением:
(1.12)
