- •Электроника и микросхемотехника
- •Вступление
- •Лабораторная работа №1 исследование полупроводниковых диодов
- •Лабораторная схема
- •Домашнее задание
- •Задание к лабораторной работе
- •Подготовка измерительного стенда к измерению вольтамперных характеристик диодов и стабилитронов.
- •Исследование германиевого микросплавного импульсного диода типа гд503а.
- •Исследование кремниевого импульсного диода 1n4148.
- •Исследование кремниевого выпрямительного диода Шоттки типа sb1100.
- •Исследование кремниевого маломощного стабилитрона типа 1n5201.
- •Теоретические знания
- •Образование электронно-дырочного перехода
- •Вольтамперная характеристика р-п перехода
- •Полупроводниковые диоды
- •Влияние внешних факторов на вах реальных диодов
- •3.2 Классификация диодов
- •Параметры и применение исследуемых типов диодов
- •Контрольные вопросы
- •Лабораторная работа № 2 Исследование статических параметров биполярных транзисторов
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Подготовка измерительного стенда к измерению статических характеристик биполярного транзистора, включенного по схеме с оэ.
- •Исследование германиевого биполярного транзистора р-п-р типа мп41а.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора п-р-п типа вс547.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора п-р-п типа кт315е.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора Дарлингтона п-р-п типа кт3102е.
- •Теоретические знания
- •1 Структура и основные режимы работы биполярного транзистора
- •2 Работа транзистора в активном режиме
- •3 Сравнение различных схем включения транзистора
- •4 Модель Эберса-Молла
- •5 Малосигнальные параметры биполярного транзистора
- •6 Статические характеристики биполярного транзистора
- •7 Работа транзистора в импульсном режиме
- •8 Основные параметры биполярных транзисторов
- •9 Классификация биполярных транзисторов
- •10 Система обозначений биполярных транзисторов
- •Контрольные вопросы
- •Лабораторная работа № 3 Исследование статических параметров униполярных транзисторов
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •2. Исследование полевого транзистора управляемого р-п переходом и каналом п-типа кп303и.
- •3. Исследование мдп транзистора с изолированным затвором и индуцированным каналом р-типа кп301б.
- •4. Исследование мдп транзистора с изолированным затвором и встроенным каналом п-типа кп306а.
- •Теоретические знания
- •1 Структура и принцип работы униполярного транзистора с управляющим р-п переходом
- •2 Структура и принцип работы униполярного транзистора с изолированным затвором
- •4 Малосигнальные параметры униполярных транзисторов
- •5 Основные схемы включения униполярных транзисторов
- •6 Классификация униполярных транзисторов
- •7 Система обозначений униполярных транзисторов
- •Контрольные вопросы
- •Лабораторная работа № 4 Исследование rс-усилителя на биполярном р-п-р транзисторе
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •1 Выбор режима работы усилителя по постоянному току
- •Нагрузочная прямая строится следующим путем (только для линейной нагрузки):
- •2 Стабилизация работы транзисторного усилителя с помощью отрицательной обратной связи
- •3. Амплитудно - частотная характеристика усилителя
- •4 Эмиттерный повторитель напряжения
- •Если учитывать сопротивление базового делителя, то входное сопротивление приблизительно равняется
- •Контрольные вопросы
- •Лабораторная работа № 5 исследование rc–усилителя и истокового повторИтеля на полЕвом транзисторЕ
- •Лабораторные схемы
- •Домашнее задание
- •Завдання до лабораторної роботи
- •Теоретичні знання
- •1 Статические параметры полевых транзисторов
- •2 Схема включения полевого транзистора с общим истоком
- •3 Амплитудно - частотная характеристика усилителя
- •4 Истоковый повторитель напряжения
- •Выходное сопротивление истокового повторителя приблизительно равняется
- •Контрольные вопросы
- •Лабораторная работа № 6 исследование основных схем включения операционного усилителя
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •1 Идеальный операционный усилитель
- •2 Параметры реального операционного усилителя
- •3 Основные схемы включения операционных усилителей
- •4 Зависимость коэффициента усиления оу и фазового смещения от частоты
- •Контрольные вопросы
- •Лабораторная работа № 7 исследование основных типов мультивибраторов, применяемых в системах управления
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •1. Исследование мультивибратора на биполярных транзисторах
- •2. Исследование мультивибратора на операционном усилителе
- •Теоретические знания
- •1 Мультивибратор на биполярных транзисторах
- •2 Мультивибратор на основе операционного усилителя (оу)
- •Контрольные вопросы
- •Лабораторная работа № 8 исследование блокинг-генератора
- •Лабораторные схемы
- •Д омашнее задание
- •Задание к лабораторной работе
- •Исследование схемы блокинг-генератора, работающего в автоколебательном режиме.
- •Исследование схемы блокинг-генератора, работающего в ждущем режиме.
- •Теоретические знания
- •1 Общие сведения о блокинг-генераторах
- •2 Блокинг-генератор, работающий в автоколебательном режиме
- •3 Блокинг-генератор, работающий в ждущем режиме
- •Контрольные вопросы
- •Лабораторная работа № 9 исследование генераторов пилообразного напряжения
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Исследование схемы генератора пилообразного напряжения со следящей связью.
- •Исследование схемы генератора пилообразного напряжения на основе генератора стабильного тока.
- •Теоретические знания
- •1 Общие сведения о генераторах пилообразного напряжения
- •2 Формирователь глин со следящей связью
- •3 Формирователь глин на основе генератора стабильного тока
- •4 Автоколебательный глин на основе операционного усилителя
- •Контрольные вопросы
- •Лабораторная работа № 10 исследование типОвых логических функциональных элементов интегральных микросхем
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •Классификация интегральных микросхем
- •2 Условные обозначения и таблицы истинности основных логических элементов
- •3 Типовые схемы базовых логических элементов интегральных микросхем
- •4 Сравнение ттл и кмоп логических элементов
- •Контрольные вопросы
- •Литература
- •Содержание
Домашнее задание
Изучить работу операционного усилителя и основных схем его включения.
Подготовить протокол к лабораторной работе. Начертить четыре принципиальные схемы: - инвертирующего и неинвертирующего усилителя, повторителя напряжения и лабораторного стенда.
Рассчитать номиналы резисторов инвертирующего и неинвертирующего усилителя для коэффициента усиления равного 10 и 100, соответственно.
Задание к лабораторной работе
Соберите схему повторителя напряжения. На его вход подайте гармонический сигнал двойной амплитудой 40 мВ и частотой 1 кГц. Определите коэффициент передачи по напряжению повторителя КП из
(6.1)
где UВЫХ – напряжение сигнала на выходе повторителя;
UВХ – напряжение сигнала на входе повторителя.
С помощью двухлучевого осциллографа изобразите в одном временном масштабе входную и выходную осциллограммы для частоты 1 кГц. Убедитесь, что эмиттерный повторитель не инвертирует фазу сигнала.
Соберите схему инвертирующего усилителя с коэффициентом усиления 10. Для этого потенциометр R17 следует установить в положение 51 кОм (крайнее правое). На вход схемы подают гармонический сигнал частотой 1 кГц и напряжением 40 мВ. Замерьте напряжение на выходе и рассчитайте коэффициент усиления по напряжению согласно
. (6.2)
Повторите это для положения потенциометра R17 равного 0 кОм (крайнее левое). Сравните полученные данные с расчетом согласно (6.3).
С помощью двухлучевого осциллографа изобразите в одном временном масштабе входную и выходную осциллограммы для частоты 1 кГц. Убедитесь, что инвертирующий усилитель инвертирует фазу сигнала.
Соберите схему неинвертирующего усилителя с коэффициентом усиления 100. Для этого потенциометр R17 следует установить в положение 51 кОм (крайнее правое). На вход схемы подают гармонический сигнал частотой 1 кГц и напряжением 40 мВ. Замерьте напряжение на выходе и рассчитайте коэффициент усиления по напряжению согласно (6.2). Повторите это для положения потенциометра R17 равного 0 кОм 0 кОм (крайнее левое). Сравните полученные данные с расчетом согласно (6.6).
С помощью двухлучевого осциллографа изобразите в одном временном масштабе входную и выходную осциллограммы для частоты 1 кГц. Убедитесь, что неинвертирующий усилитель не инвертирует фазу сигнала.
Измерить частоту единичного усиления, неинвертирующего операционного усилителя. Для чего снимите амплитудно-частотную характеристику (АЧХ) такого усилителя до появления спада на участке больших частот (до 1 МГц). На вход схемы нужно подавать гармонический сигнал амплитудой 40 мВ с последовательно изменяющейся частотой 50, 100, 500 Гц, 1 кГц, и т.д до 1 МГц. Для каждой частоты нужно замерить амплитуду выходного сигнала и рассчитать коэффициент усиления в дБ согласно (6.2). Результаты занесите в таблицу 6.1.
Таблица 6.1 - Амплитудно – частотная характеристика ОУ
Частота, Гц |
50 |
100 |
500 |
1000 |
5000 |
10000 |
50000 |
100000 |
500000 |
1000000 |
UBX,, мВ |
|
|
|
|
|
|
|
|
|
|
UBЫX,, В |
|
|
|
|
|
|
|
|
|
|
КU, дБ |
|
|
|
|
|
|
|
|
|
|
П
о
данным табл.6.1 нужно построить график
АЧХ и определить согласно рис.6.3 частоту
единичного усиления F1
и коэффициент усиления ОУ без обратной
связи K0.
Для этого на экспериментально снятой
АЧХ нужно выполнить интерполяцию АЧХ
ОУ без обратной связи, считая, что ее
наклон отвечает 20 дБ/.декаду, а частота
первого полюса равняется 10 Гц (рис.6.3).
