
- •Электроника и микросхемотехника
- •Вступление
- •Лабораторная работа №1 исследование полупроводниковых диодов
- •Лабораторная схема
- •Домашнее задание
- •Задание к лабораторной работе
- •Подготовка измерительного стенда к измерению вольтамперных характеристик диодов и стабилитронов.
- •Исследование германиевого микросплавного импульсного диода типа гд503а.
- •Исследование кремниевого импульсного диода 1n4148.
- •Исследование кремниевого выпрямительного диода Шоттки типа sb1100.
- •Исследование кремниевого маломощного стабилитрона типа 1n5201.
- •Теоретические знания
- •Образование электронно-дырочного перехода
- •Вольтамперная характеристика р-п перехода
- •Полупроводниковые диоды
- •Влияние внешних факторов на вах реальных диодов
- •3.2 Классификация диодов
- •Параметры и применение исследуемых типов диодов
- •Контрольные вопросы
- •Лабораторная работа № 2 Исследование статических параметров биполярных транзисторов
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Подготовка измерительного стенда к измерению статических характеристик биполярного транзистора, включенного по схеме с оэ.
- •Исследование германиевого биполярного транзистора р-п-р типа мп41а.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора п-р-п типа вс547.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора п-р-п типа кт315е.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора Дарлингтона п-р-п типа кт3102е.
- •Теоретические знания
- •1 Структура и основные режимы работы биполярного транзистора
- •2 Работа транзистора в активном режиме
- •3 Сравнение различных схем включения транзистора
- •4 Модель Эберса-Молла
- •5 Малосигнальные параметры биполярного транзистора
- •6 Статические характеристики биполярного транзистора
- •7 Работа транзистора в импульсном режиме
- •8 Основные параметры биполярных транзисторов
- •9 Классификация биполярных транзисторов
- •10 Система обозначений биполярных транзисторов
- •Контрольные вопросы
- •Лабораторная работа № 3 Исследование статических параметров униполярных транзисторов
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •2. Исследование полевого транзистора управляемого р-п переходом и каналом п-типа кп303и.
- •3. Исследование мдп транзистора с изолированным затвором и индуцированным каналом р-типа кп301б.
- •4. Исследование мдп транзистора с изолированным затвором и встроенным каналом п-типа кп306а.
- •Теоретические знания
- •1 Структура и принцип работы униполярного транзистора с управляющим р-п переходом
- •2 Структура и принцип работы униполярного транзистора с изолированным затвором
- •4 Малосигнальные параметры униполярных транзисторов
- •5 Основные схемы включения униполярных транзисторов
- •6 Классификация униполярных транзисторов
- •7 Система обозначений униполярных транзисторов
- •Контрольные вопросы
- •Лабораторная работа № 4 Исследование rс-усилителя на биполярном р-п-р транзисторе
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •1 Выбор режима работы усилителя по постоянному току
- •Нагрузочная прямая строится следующим путем (только для линейной нагрузки):
- •2 Стабилизация работы транзисторного усилителя с помощью отрицательной обратной связи
- •3. Амплитудно - частотная характеристика усилителя
- •4 Эмиттерный повторитель напряжения
- •Если учитывать сопротивление базового делителя, то входное сопротивление приблизительно равняется
- •Контрольные вопросы
- •Лабораторная работа № 5 исследование rc–усилителя и истокового повторИтеля на полЕвом транзисторЕ
- •Лабораторные схемы
- •Домашнее задание
- •Завдання до лабораторної роботи
- •Теоретичні знання
- •1 Статические параметры полевых транзисторов
- •2 Схема включения полевого транзистора с общим истоком
- •3 Амплитудно - частотная характеристика усилителя
- •4 Истоковый повторитель напряжения
- •Выходное сопротивление истокового повторителя приблизительно равняется
- •Контрольные вопросы
- •Лабораторная работа № 6 исследование основных схем включения операционного усилителя
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •1 Идеальный операционный усилитель
- •2 Параметры реального операционного усилителя
- •3 Основные схемы включения операционных усилителей
- •4 Зависимость коэффициента усиления оу и фазового смещения от частоты
- •Контрольные вопросы
- •Лабораторная работа № 7 исследование основных типов мультивибраторов, применяемых в системах управления
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •1. Исследование мультивибратора на биполярных транзисторах
- •2. Исследование мультивибратора на операционном усилителе
- •Теоретические знания
- •1 Мультивибратор на биполярных транзисторах
- •2 Мультивибратор на основе операционного усилителя (оу)
- •Контрольные вопросы
- •Лабораторная работа № 8 исследование блокинг-генератора
- •Лабораторные схемы
- •Д омашнее задание
- •Задание к лабораторной работе
- •Исследование схемы блокинг-генератора, работающего в автоколебательном режиме.
- •Исследование схемы блокинг-генератора, работающего в ждущем режиме.
- •Теоретические знания
- •1 Общие сведения о блокинг-генераторах
- •2 Блокинг-генератор, работающий в автоколебательном режиме
- •3 Блокинг-генератор, работающий в ждущем режиме
- •Контрольные вопросы
- •Лабораторная работа № 9 исследование генераторов пилообразного напряжения
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Исследование схемы генератора пилообразного напряжения со следящей связью.
- •Исследование схемы генератора пилообразного напряжения на основе генератора стабильного тока.
- •Теоретические знания
- •1 Общие сведения о генераторах пилообразного напряжения
- •2 Формирователь глин со следящей связью
- •3 Формирователь глин на основе генератора стабильного тока
- •4 Автоколебательный глин на основе операционного усилителя
- •Контрольные вопросы
- •Лабораторная работа № 10 исследование типОвых логических функциональных элементов интегральных микросхем
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •Классификация интегральных микросхем
- •2 Условные обозначения и таблицы истинности основных логических элементов
- •3 Типовые схемы базовых логических элементов интегральных микросхем
- •4 Сравнение ттл и кмоп логических элементов
- •Контрольные вопросы
- •Литература
- •Содержание
4 Модель Эберса-Молла
Моделирование ставит своей задачей установление связей между физическими параметрами и электрическими характеристиками приборов. Особенно необходимо моделирование при разработке интегральных микросхем, когда по простым и точным моделям приборов удается определить поведение сложной схемы.
М
одель
Эберса-Молла (рис.2.5) отличается простотой
и хорошо отражает отсутствие принципиального
различия между обоими переходами и их
обратимость, которая проявляется при
работе транзистора в инверсном активном
режиме. Модель состоит из двух диодов
и двух источников тока, включенных
встречно. Источники тока управляются
диодами. Источники тока являются
аналогами источника ЭДС. Идеальный
источник ЭДС имеет нулевое внутреннее
сопротивление, а источник тока –
бесконечно большое сопротивление и
жестко задает ток в цепи независимо от
ее сопротивления.
Токи инжектируемых носителей заряда обозначаются через I1 и I2, а токи собираемых носителей – через αNI1 и αII2.
На основе модели Эберса-Молла можно составлять уравнения, связывающие эмиттерные, коллекторные и базовые токи с напряжениями на переходах. Такие уравнения являются математической моделью транзистора, на основе которой проводят анализ его статических режимов.
5 Малосигнальные параметры биполярного транзистора
Если переменные
напряжения на переходах транзисторов
достаточно малы, то токи в нем оказываются
линейными функциями этих напряжений.
Поэ
тому
транзистор можно рассматривать как
линейный четырехполюсник (рис.2.6). При
этом два внешних вывода четырехполюсника
считают входными и соответствующие им
ток и напряжение обозначают как I1
и U1.
Два других вывода являются выходными,
соответствующие им ток и напряжение
обозначают как I2
и U2.
За положительное значение принимают
значения токов, входящих в четырехполюсник.
Для описания связи между I1, U2, I2 и U2 обычно используют три системы: систему z-параметров, систему y-параметров и систему h–параметров.
Для системы z-параметров напряжения рассматриваются как линейные функции тока:
.
(2.23)
Коэффициенты zik, имеющие размерность сопротивления и являющиеся комплексными, можно выразить через токи и напряжения, измеренные в режиме холостого хода, следующим образом:
.
(2.24)
Здесь, как и в дальнейшем, индекс 11 означает входной параметр, индекс 12 – параметр обратной связи, индекс 21 – параметр прямой передачи, индекс 22 – выходной параметр.
Для получения режима холостого хода в цепь включают сопротивление, значительно большее входного или выходного сопротивления четырехполюсника, а питание электродов осуществляют постоянным напряжением. Осуществить режим холостого хода в цепи эмиттера или базы не составляет труда, поскольку внутреннее сопротивление открытого перехода достаточно мало. Однако создать режим холостого хода в цепи коллектора затруднительно, поскольку сопротивление обратно смещенного коллекторного перехода достигает нескольких Мом. По этой причине экспериментально определить z-параметры транзистора трудно.
Для системы у-параметров токи рассматриваются как линейные функции напряжения:
.
(2.25)
Коэффициенты уik, имеющие размерность проводимости и являющиеся комплексными, можно выразить через токи и напряжения, измеренные в режиме короткого замыкания, следующим образом:
(2.26)
Для получения режима короткого замыкания исследуемую цепь шунтируют сопротивлением, значительно меньшим внутреннего сопротивления соответствующей цепи. Учитывая необходимость обеспечения питания электродов транзистора постоянным напряжением, такое шунтирование можно проводить емкостью.
Режим короткого замыкания легко осуществить в цепи коллектора, где внутренне сопротивление велико. Однако осуществить режим короткого замыкания в цепи эмиттера, особенно на низких частотах, крайне затруднено. По этой причине система у-параметров ограничено применяется для описания свойств транзисторов.
Для избежания указанных трудностей для описания свойств транзисторов широко применяется система h–параметров, использующая смешанную систему определения токов и напряжений:
.
(2.27)
В этой системе для определения h–параметров необходим режим короткого замыкания в выходной цепи и режим холостого хода во входной цепи, что для транзистора реализовать достаточно просто:
.
(2.28)
Для транзистора, включенного по схеме с общим эмиттеров выражение (5.27) переписывается в виде
.
(2.29)
Физический смысл h–параметров следующий:
- входное сопротивление
при коротком замыкании выходной цепи;
- коэффициент
обратной связи по напряжению при холостом
ходе во входной цепи;
- коэффициент
передачи тока при коротком замыкании
выходной цепи;
- выходная
проводимость при холостом ходе во
входной цепи.
Система h–параметров удобна для описания свойств транзисторов из-за удобства их экспериментального определения, а также из-за того, что h–параметры измеряют в режимах, близких к режимам работы транзистора в практических схемах.
Значения параметров транзистора, представленного в виде четырехполюсника, зависят от схемы включения транзистора. Однако, если эти параметры известны для какой-либо одной схемы, сравнительно легко провести пересчет для любой другой схемы. Для этого надо заменить напряжения и токи (имея в виду правило знаков), учитывая, что в транзисторе
(2.30)
(2.31)