
- •Электроника и микросхемотехника
- •Вступление
- •Лабораторная работа №1 исследование полупроводниковых диодов
- •Лабораторная схема
- •Домашнее задание
- •Задание к лабораторной работе
- •Подготовка измерительного стенда к измерению вольтамперных характеристик диодов и стабилитронов.
- •Исследование германиевого микросплавного импульсного диода типа гд503а.
- •Исследование кремниевого импульсного диода 1n4148.
- •Исследование кремниевого выпрямительного диода Шоттки типа sb1100.
- •Исследование кремниевого маломощного стабилитрона типа 1n5201.
- •Теоретические знания
- •Образование электронно-дырочного перехода
- •Вольтамперная характеристика р-п перехода
- •Полупроводниковые диоды
- •Влияние внешних факторов на вах реальных диодов
- •3.2 Классификация диодов
- •Параметры и применение исследуемых типов диодов
- •Контрольные вопросы
- •Лабораторная работа № 2 Исследование статических параметров биполярных транзисторов
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Подготовка измерительного стенда к измерению статических характеристик биполярного транзистора, включенного по схеме с оэ.
- •Исследование германиевого биполярного транзистора р-п-р типа мп41а.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора п-р-п типа вс547.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора п-р-п типа кт315е.
- •Исследование кремниевого эпитаксиально-диффузионного биполярного транзистора Дарлингтона п-р-п типа кт3102е.
- •Теоретические знания
- •1 Структура и основные режимы работы биполярного транзистора
- •2 Работа транзистора в активном режиме
- •3 Сравнение различных схем включения транзистора
- •4 Модель Эберса-Молла
- •5 Малосигнальные параметры биполярного транзистора
- •6 Статические характеристики биполярного транзистора
- •7 Работа транзистора в импульсном режиме
- •8 Основные параметры биполярных транзисторов
- •9 Классификация биполярных транзисторов
- •10 Система обозначений биполярных транзисторов
- •Контрольные вопросы
- •Лабораторная работа № 3 Исследование статических параметров униполярных транзисторов
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •2. Исследование полевого транзистора управляемого р-п переходом и каналом п-типа кп303и.
- •3. Исследование мдп транзистора с изолированным затвором и индуцированным каналом р-типа кп301б.
- •4. Исследование мдп транзистора с изолированным затвором и встроенным каналом п-типа кп306а.
- •Теоретические знания
- •1 Структура и принцип работы униполярного транзистора с управляющим р-п переходом
- •2 Структура и принцип работы униполярного транзистора с изолированным затвором
- •4 Малосигнальные параметры униполярных транзисторов
- •5 Основные схемы включения униполярных транзисторов
- •6 Классификация униполярных транзисторов
- •7 Система обозначений униполярных транзисторов
- •Контрольные вопросы
- •Лабораторная работа № 4 Исследование rс-усилителя на биполярном р-п-р транзисторе
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •1 Выбор режима работы усилителя по постоянному току
- •Нагрузочная прямая строится следующим путем (только для линейной нагрузки):
- •2 Стабилизация работы транзисторного усилителя с помощью отрицательной обратной связи
- •3. Амплитудно - частотная характеристика усилителя
- •4 Эмиттерный повторитель напряжения
- •Если учитывать сопротивление базового делителя, то входное сопротивление приблизительно равняется
- •Контрольные вопросы
- •Лабораторная работа № 5 исследование rc–усилителя и истокового повторИтеля на полЕвом транзисторЕ
- •Лабораторные схемы
- •Домашнее задание
- •Завдання до лабораторної роботи
- •Теоретичні знання
- •1 Статические параметры полевых транзисторов
- •2 Схема включения полевого транзистора с общим истоком
- •3 Амплитудно - частотная характеристика усилителя
- •4 Истоковый повторитель напряжения
- •Выходное сопротивление истокового повторителя приблизительно равняется
- •Контрольные вопросы
- •Лабораторная работа № 6 исследование основных схем включения операционного усилителя
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •1 Идеальный операционный усилитель
- •2 Параметры реального операционного усилителя
- •3 Основные схемы включения операционных усилителей
- •4 Зависимость коэффициента усиления оу и фазового смещения от частоты
- •Контрольные вопросы
- •Лабораторная работа № 7 исследование основных типов мультивибраторов, применяемых в системах управления
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •1. Исследование мультивибратора на биполярных транзисторах
- •2. Исследование мультивибратора на операционном усилителе
- •Теоретические знания
- •1 Мультивибратор на биполярных транзисторах
- •2 Мультивибратор на основе операционного усилителя (оу)
- •Контрольные вопросы
- •Лабораторная работа № 8 исследование блокинг-генератора
- •Лабораторные схемы
- •Д омашнее задание
- •Задание к лабораторной работе
- •Исследование схемы блокинг-генератора, работающего в автоколебательном режиме.
- •Исследование схемы блокинг-генератора, работающего в ждущем режиме.
- •Теоретические знания
- •1 Общие сведения о блокинг-генераторах
- •2 Блокинг-генератор, работающий в автоколебательном режиме
- •3 Блокинг-генератор, работающий в ждущем режиме
- •Контрольные вопросы
- •Лабораторная работа № 9 исследование генераторов пилообразного напряжения
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Исследование схемы генератора пилообразного напряжения со следящей связью.
- •Исследование схемы генератора пилообразного напряжения на основе генератора стабильного тока.
- •Теоретические знания
- •1 Общие сведения о генераторах пилообразного напряжения
- •2 Формирователь глин со следящей связью
- •3 Формирователь глин на основе генератора стабильного тока
- •4 Автоколебательный глин на основе операционного усилителя
- •Контрольные вопросы
- •Лабораторная работа № 10 исследование типОвых логических функциональных элементов интегральных микросхем
- •Лабораторные схемы
- •Домашнее задание
- •Задание к лабораторной работе
- •Теоретические знания
- •Классификация интегральных микросхем
- •2 Условные обозначения и таблицы истинности основных логических элементов
- •3 Типовые схемы базовых логических элементов интегральных микросхем
- •4 Сравнение ттл и кмоп логических элементов
- •Контрольные вопросы
- •Литература
- •Содержание
Домашнее задание
Изучить принцип действия и основные схемы включения биполярного транзистора, его основные статические характеристики и параметры, графическое определение малосигнальных параметров транзистора, связи h–параметров в разных схемах включения транзистора.
Начертить упрощенную схему стенда для исследования статических характеристик биполярного транзистора (рис.2.1).
Задание к лабораторной работе
Подготовка измерительного стенда к измерению статических характеристик биполярного транзистора, включенного по схеме с оэ.
1.1 Установите плату с исследуемыми транзисторами в разъемы на верхней поверхности измерительного стенда.
1.2 В правые гнезда стенда включите вольтметр, установленный в режим измерения постоянных напряжений на пределе 20 В. Включите вольтметр. Этим вольтметром будет измеряться коллекторное напряжение UКЭ и коллекторный ток IК.
В левые гнезда стенда включите вольтметр, установленный в режим измерения постоянных напряжений на пределе 2 В. Включите вольтметр. Этим вольтметром будет измеряться базовый ток транзистора IБ.
1.4 Движки потенциометров R1 и R2 установите в крайнее левое положение, что соответствует отсутствию напряжения на транзисторе.
1.5 Включите измерительный стенд в сеть. При этом загорится светодиод.
Исследование германиевого биполярного транзистора р-п-р типа мп41а.
2.1 Для снятия статических характеристик этого транзистора установите перемычку J1 в положение 4.
2.2 Установите тумблер К4 в положение «−», тумблер К5 в положение «−».
2.3 Установите тумблер К2 в положение «UR».
2.4 Потенциометром R2 установите требуемый базовый ток IБ согласно табл. 2.1 (например, 50 мкА). Этот базовый ток в [мА] будет отображаться на вольтметре V2 и будет равняться напряжению в [В], поскольку сопротивление измерительного резистора базового тока равно 1 кОм.
2.5 Установите тумблер К1 в положение «U».
2.6 Потенциометром R1 установите требуемое коллекторное напряжение UКЭ согласно табл. 2.1 (например, 0,5 В).
2.7 Установите тумблер К1 в положение «UR». При этом вольтметр V1 покажет напряжение, которое соответствует коллекторному току в [мА], протекающему через коллектор транзистора уменьшенному в 10 раз. Если значение этого напряжения в [В] увеличить в 10 раз, то оно будет соответствовать значению коллекторного тока в [мА], поскольку сопротивление измерительного резистора R3 в этом случае равно 100 Ом. Полученный результат измерения коллекторного тока занесите в таблицу 2.1 (в данном примере на пересечении колонки 50 мкА и строки 0,5 В).
2.8 Повторите действия согласно п.2.4…2.7 для последующих значений коллекторного напряжения UКЭ и базового тока IБ согласно табл.2.1.
2.9 Постройте
семейство
выходных характеристик
при фиксированных значениях тока базы
IБ.
Графически из этих характеристик найти
выходную проводимость
при IБ
=50
и 150 мкА.
2.10 Постройте
семейство
передаточных характеристик
при фиксированных значениях напряжения
UКЭ
равных 0,5 В, 4 В и 8 В. Графически из этих
характеристик найти значение коэффициента
передачи тока базы
при UКЭ=0,5
и 8 В.
Таблица 2.1 Статические характеристики германиевого биполярного транзистора
р-п-р типа МП41А
Ток IK = 10*UR, мА
UКЭ, В |
IБ = UR , мкА |
||||
0 |
50 |
100 |
150 |
200 |
|
0 |
0 |
0 |
0 |
0 |
0 |
0,5 |
0 |
|
|
|
|
1 |
0 |
|
|
|
|
2 |
0 |
|
|
|
|
4 |
0 |
|
|
|
|
6 |
0 |
|
|
|
|
8 |
0 |
|
|
|
|
10 |
0 |
|
|
|
|