
- •Содержание
- •1. Создание схем 123
- •2. Технология составления отчета 129
- •Лабораторная работа №1 логические функции и схемы
- •1. Комбинационные схемы
- •2. Аксиомы алгебры логики
- •3. Тождества алгебры логики
- •4. Логические функции
- •5. Таблица истинности
- •6. Аналитическое представление логических функций
- •7. Карты Карно
- •8. Частично определенные логические функции
- •9. Система логических функций
- •10. Подготовка к выполнению работы
- •11. Порядок выполнения работы
- •12. Отчет по работе
- •13. Контрольные вопросы и задания
- •Варианты заданий Логические функции трех переменных
- •Системы логических функций четырех аргументов
- •Лабораторная работа №2 дешифраторы
- •1. Принцип действия дешифраторов
- •2. Каскадирование дешифраторов
- •3. Дешифратор в качестве демультиплексора
- •4. Структуры дешифраторов
- •5. Реализация логических функций на дешифраторах
- •6. Дешифратор десятичного кода
- •7. Подготовка к выполнению работы
- •8. Порядок выполнения работы
- •9. Отчет по работе
- •10. Контрольные вопросы и задания
- •Варианты заданий: Десятичные коды
- •Лабораторная работа №3 мультиплексоры
- •1. Мультиплексоры
- •2. Уравнение мультиплексора
- •3. Наращивание информационной емкости мультиплексоров
- •4. Реализация логических функций на мультиплексорах
- •5. Подготовка к выполнению работы
- •6. Порядок выполнения работы
- •7. Отчет по работе
- •8. Контрольные вопросы и задания
- •1.6. Контрольные вопросы
- •Лабораторная работа № 4.1 двухступенчатые триггеры
- •1. Постановка задачи
- •2. Пример проектирования двухступенчатого триггера
- •3. Экспериментальное исследование триггера
- •4. Подготовка к выполнению работы
- •5. Порядок выполнения работы
- •6. Отчет по работе
- •7. Варианты заданий
- •Группа 2
- •Лабораторная работа № 4.2 триггерные структуры на d- и jk-триггерах
- •1. Проектирование триггерных структур на d-триггерах
- •2. Проектирование триггерных структур на jk-триггерах
- •2. Синтез синхронных счетчиков
- •2.1. Счетчик на jk–триггерах
- •2.1. Счетчик на d–триггерах
- •3. Организация переноса
- •4. Примеры схем и временных диаграмм
- •5. Контрольные вопросы
- •7. Подготовка к выполнению работы
- •8. Порядок выполнения работы
- •9. Отчет по работе
- •10. Варианты заданий
- •Лабораторная работа № 6 Регистры
- •1. Введение
- •2. Регистры памяти
- •3. Регистры сдвига
- •4. Цепи ввода и вывода информации в регистрах
- •5. Регистры сдвига с обратными связями
- •5.1. Простое кольцо
- •5.2. Кольцо Мёбиуса – счетчик Джонсона
- •6. Контрольные вопросы
- •7. Подготовка к выполнению работы
- •8. Порядок выполнения работы
- •2. Проектирование конечных автоматов
- •2.1. Проектирование конечного автомата без учета времени
- •2.2. Проектирование конечного автомата с учетом времени
- •3. Контрольные вопросы
- •4. Подготовка к выполнению работы
- •5. Порядок выполнения работы
- •6. Отчет по работе
- •6. Варианты заданий
- •Группа 2
- •Литература
- •Приложение
- •1. Создание схем
- •1.1. Технология построения схем
- •Путем настройки приборов можно осуществить следующее:
- •Графические возможности программы позволяют:
- •1.2. Исследование схем
- •1.3. Контрольные вопросы
- •2. Технология составления отчета
- •2.1. Требования к отчету
- •2.2. Вывод результатов на принтер
6. Аналитическое представление логических функций
Аналитически запись логических функций может быть представлена в виде дизъюнктивной или конъюнктивной нормальной формы (СДНФ, СКНФ). В дизъюнктивной форме функция записывается как логическая сумма логических произведений, в конъюнктивной форме – как логическое произведение логических сумм. Порядок выполнения действий такой же, как и в обычных алгебраических формулах.
Представление функции в виде СДНФ или СКНФ легко получить по таблице истинности данной функции.
Таблица 1
№ |
Значения переменных |
Функции |
||||||
x |
у |
f1 |
f2 |
f3 |
f4 |
f5 |
f6 |
|
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
2 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
3 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
Чтобы получить аналитическое выражение в СДНФ функции, заданной таблицей истинности, нужно записать логическую сумму произведений входных переменных для тех наборов, на которых функция принимает единичное значение, причем, переменная берется без знака инверсии, если ее значение в наборе равно 1 и с инверсией, если ее значение в наборе равно 0.
Чтобы получить аналитическое выражение в СКНФ функции, заданной таблицей истинности, нужно записать логическое произведение сумм входных переменных для тех наборов, на которых функция принимает нулевое значение, причем, переменная берется со знаком инверсии, если ее значение в наборе равно 1, и без знака инверсии, если ее значение в наборе равно 0.
7. Карты Карно
Основной целью логических преобразований является получение компактного логического выражения (минимизация). Минимизацию производят объединением соседних наборов (термов). Объединяемые наборы должны иметь одинаковые значения функции (все 0 или все 1). Если число логических переменных не превышает 5, преобразования логических функций удобно производить с помощью карт Карно.
Для наглядности рассмотрим пример: пусть требуется найти логическое выражение для мажоритарной функции fm трех переменных x, у, z, описываемой таблицей истинности, показанной в табл. 2.
Функция fm строится по принципу голосования “два из трех”, т.е. принимает то значение, которое имеют большинство переменных.
Составим карту Карно функции fm (табл. 3). В карте столбцам и строкам соответствуют наборы переменных (или одна из переменных), причем переменные располагаются в таком порядке, чтобы при переходе к соседнему столбцу или строке изменялось значение только одной переменной. Например, в строке xy табл. 3 значения переменных xy могут быть представлены следующими последовательностями 00, 01, 11, 10 или 00, 10, 11, 01. Внутри таблицу заполняют значениями функции, соответствующими комбинациям значений переменных.
На карте Карно отмечаем группы, состоящие из 2k соседних клеток (2, 4, 8,…) и содержащие 1. В результате объединения (склеивания) таких ячеек в записи функции получаются более простые логические выражения. Три овала в таблице определяют логические выражения xy, xz, yz, полученные путем применения следующих операций склеивания:
Таблица 2
№ |
x |
y |
z |
fm |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
2 |
0 |
1 |
0 |
0 |
3 |
0 |
1 |
1 |
1 |
4 |
1 |
0 |
0 |
0 |
5 |
1 |
0 |
1 |
1 |
6 |
1 |
1 |
0 |
1 |
7 |
1 |
1 |
1 |
1 |
Окончательное выражение, описывающее функцию, представляет собой дизъюнкцию полученных при помощи карты конъюнкций. В итоге получаем выражение в дизъюнктивной нормальной форме (ДНФ)
fm = xy v xz v yz .
Таблица 3
-
yz
x
00
01
11
10
0
0
0
1
0
1
0
1
1
1
xz yz xy
Самая короткая по числу букв ДНФ будет представлять собой минимальную дизъюнктивную нормальную форму (МДНФ).
Если объединять 0, то получим запись в конъюнктивной нормальной форме (КНФ)
fm = (x v y)( x v z)(y v z).
Обратим внимание на то, что полученные записи функции fm в ДНФ или КНФ являются более компактными, чем ее представления в СДНФ или СКНФ.