
- •Лабораторно-практическая работа №1 «Снятие тяговых характеристик электромагнита»
- •Краткие теоретические сведения.
- •Оборудование.
- •Порядок выполнения работы.
- •1.Получить инструктаж по т.Б.
- •Лабораторно-практическая работа №2 «Исследования работы автоматического выключателя»
- •Краткие теоретические сведения.
- •Оборудование.
- •Порядок выполнения работы.
- •1.Получить инструктаж по т.Б.
- •5. Зарисовать кинематическую схему в отчет.
- •Конструкция выключателя (приложение)
- •Лабораторная работа №3 «Исследования работы аппаратов управления, защиты и автоматики»
- •Краткие теоретические сведения.
- •Назначение контактора
- •Принцип действия контактора
- •Конструкция мп
- •Назначение мп
- •Принцип работы мп
- •Оборудование.
- •Порядок выполнения работы.
- •1.Получить инструктаж по т.Б.
- •Устройство и принцип работы
- •Оборудование.
- •Порядок выполнения работы.
- •1.Получить инструктаж по т.Б.
Принцип действия контактора
Принцип работы контактора: на катушку управления подается напряжение, якорь притягивается к сердечнику и контактная группа замыкается или размыкается в зависимости от исходного состояния каждого из контактов. При отключении происходят обратные действия.
Магнитный пускатель - это модифицированный контактор. В отличие от контактора, магнитный пускатель комплектуется дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя.Пускатель электромагнитный (магнитный пускатель) -- это низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления для пуска и разгона электродвигателя до номинальной скорости, обеспечения его непрерывной работы, отключения питания и защиты электродвигателя и подключенных цепей от рабочих перегрузок.
Конструкция мп
Пускатель представляет собой контактор, комплектованный дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя, плавкими предохранителями.Помимо простого включения, в случае управления электродвигателем пускатель может выполнять функцию переключения направления вращения его ротора (т. н. реверсивная схема), путем изменения порядка следования фаз для чего в пускатель встраивается второй контактор.переключения обмоток трехфазного двигателя со «звезды» на «треугольник» производится для уменьшения пускового тока двигателя.Исполнение магнитных пускателей может быть открытым и защищенным (в корпусе); реверсивным и нереверсивным; с встроенной тепловой защитой электродвигателя от перегрузки и без нее.Реверсивный магнитный пускатель представляет собой два трёхполюсных контактора, укреплённых на общем основании и сблокированных механической или электрической блокировкой, исключающей возможность одновременного включения контакторов.
Назначение мп
Магнитные пускатели предназначены для применения в стационарных установках для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором при напряжении до 660В и номинальном токе частотой 50 и 60 Гц. При наличии тепловых реле пускатели осуществляют защиту управляемых электродвигателей от перегрузки недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз. Пускатели, комплектуемые ограничителями перенапряжений, пригодны для работы в системах управления с применением микропроцессорной техники.
Наиболее распространенные серии пускателей с контактной системой и электромагнитным приводом: ПМЕ, ПМА, ПА, ПВН, ПМЛ, ПВ, ПАЕ, ПМ12.
Принцип работы мп
Принцип действия нереверсивного магнитного пускателя (рис. 1) заключается в следующем: при включении пускателя по катушке проходит электрический ток, сердечник намагничивается и притягивает якорь, при этом главные контакты замыкаются, по главной цепи протекает ток. При отключении пускателя катушка обесточивается, под действием возвратной пружины якорь возвращается в исходное положение, главные контакты размыкаются.При отключении магнитного пускателя вследствие перебоев в электроснабжении размыкаются все его контакты, в том числе и вспомогательные.Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2.Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.
Реле - электрический аппарат, предназначенный для коммутации электрических цепей (скачкообразного изменения выходных величин) при заданных изменениях электрических или не электрических входных величин. Релейные элементы (реле) находят широкое применение в схемах управления и автоматики, так как с их помощью можно управлять большими мощностями на выходе при малых по мощности входных сигналах; выполнять логические операции; создавать многофункциональные релейные устройства; осуществлять коммутацию электрических цепей; фиксировать отклонения контролируемого параметра от заданного уровня; выполнять функции запоминающего элемента и т. д.
Классификация реле
Реле классифицируются по различным признакам: по виду входных физических величин, на которые они реагируют; по функциям, которые они выполняют в системах управления; по конструкции и т. д. По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.
Устройство реле
Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного. Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину. Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент. Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом. Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству. Например, в реле максимального тока или реле напряжения воспринимающий элемент выполнен в виде электромагнита, в реле давления – в виде мембраны или сильфона, в реле уровня – в вице поплавка и т.д.
По устройству исполнительного элемента реле подразделяются на контактные и бесконтактные. Контактные реле воздействуют на управляемую цепь с помощью электрических контактов, замкнутое или разомкнутое состояние которых позволяет обеспечить или полное замыкание или полный механический разрыв выходной цепи. Бесконтактные реле воздействуют на управляемую цепь путём резкого (скачкообразного) изменения параметров выходных электрических цепей (сопротивления, индуктивности, емкости) или изменения уровня напряжения (тока).
Характеристики реле
Основные характеристики реле определяются зависимостями между параметрами выходной и входной величины.Различают следующие основные характеристики реле.
1. Величина срабатывания Хср реле – значение параметра входной величины, при которой реле включается. При Х < Хср выходная величина равна Уmin, при Х ³ Хср величина У скачком изменяется от Уmin до Уmax и реле включается. Величина срабатывания, на которую отрегулировано реле, называется уставкой.
2. Мощность срабатывания Рср реле – минимальная мощность, которую необходимо подвести к воспринимающему органу для перевода его из состояния покоя в рабочее состояние.
3. Управляемая мощность Рупр – мощность, которой управляют коммутирующие органы реле в процессе переключении. По мощности управления различают реле цепей малой мощности (до 25 Вт), реле цепей средней мощности (до 100 Вт) и реле цепей повышенной мощности (свыше 100 Вт), которые относятся к силовым реле и называются контакторами.
4. Время срабатывания tср реле – промежуток времени от подачи на вход реле сигнала Хср до начала воздействия на управляемую цепь. По времени срабатывания различают нормальные, быстродействующие, замедленные реле и реле времени. Обычно для нормальных реле tср = 50…150 мс, для быстродействующих реле tср 1 с.
Принцип действия и устройство электромагнитных реле
Электромагнитные реле, благодаря простому принципу действия и высокой надежности, получили самое широкое применение в системах автоматики и в схемах защиты электроустановок. Электромагнитные реле делятся на реле постоянного и переменного тока. Реле постоянного тока делятся на нейтральные и поляризованные. Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке, а поляризованные реле реагируют на полярность управляющего сигнала.Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой. Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты.В исходном положении якорь удерживается пружиной. При подаче напряжения электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения напряжения пружина возвращает якорь в исходное положение. В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех.
Управляемая цепь электрически никак не связана с управляющей, более того в управляемой цепи величина тока может быть намного больше чем в управляющей. То есть реле по сути выполняют роль усилителя тока, напряжения и мощности в электрической цепи.Реле переменного тока срабатывают при подаче на их обмотки тока определенной частоты, то есть основным источником энергии является сеть переменного тока. Конструкция реле переменного тока напоминает конструкцию реле постоянного тока, только сердечник и якорь изготавливаются из листов электротехнической стали, чтобы уменьшить потери на гистерезис и вихревые токи.
Реле времени электродвигательные предназначены для создания выдержки времени при передаче электрических сигналов в системах автоматики и телемеханики, когда требуются выдержки времени свыше 10 с и надо обеспечить строго последовательное коммутирование (программирование) нескольких цепей. Реле выполняются на выдержки времени от 10 до 900 с с числом управляемых цепей до 16 для работы как при переменном, так и при постоянном токе. Реле состоит из следующих основных узлов:
электродвигателя синхронного трехфазного переменного тока или постоянного тока с насаженным на его вал червяком;
редуктора, замедление (передаточное число) которого соответствует максимальной выдержке времени, создаваемой реле;
контактного устройства, в которое входит контактный набор — соответствующее данному исполнению реле число замыкающих, размыкающих или переключающих контактов и соответствующее ему число переключающих кулачков с устройствами их установки и регулирования;
электромагнитов (электромагнитных реле) с соответствующими устройствами для управления двигателем и муфтами для сцепления и расцепления двигателя с редуктором и редуктора с контактным устройством;возвратных пружин.
Рабочий цикл реле при включенном электродвигателе начинается с подачи сигнала на сцепление двигателя с редуктором. Вращение двигателя через редуктор передается на рабочее зубчатое колесо и далее на привод кулачков (через общий вал или другое устройство). Кулачки производят переключение контактов в установленной последовательности и с заданной выдержкой времени: Одновременно взводится возвратная пружина.После полного оборота рабочего зубчатого колеса (вала с кулачками) соответствующие контакты отключают двигатель или муфту сцепления двигателя с редуктором. Кулачки остаются в достигнутом положении. Затем, после снятия команды на работу реле, рабочее зубчатое колесо расцепляется с редуктором и возвратная пружина возвращает кулачки и контакты в исходное положение. Реле готово к новому циклу работы.Реле собирается на металлическом основании и закрывается кожухом (в соответствии с исполнением по защите). В кожухе имеются окна для наблюдения шкал выдержек времениИзносостойкость «реле в зависимости от осуществленной выдержки времени доставляет от нескольких тысяч до нескольких десятков тысяч циклов.
Недостатками реле являются сложность конструкции и малая износостойкость. Достоинства — большие выдержки времени и высокая точность последовательности переключения контактов, что не достигается другими способами.Реле времени электромагнитное, создающее выдержку при помощи часового механизма, показано на рис. 1, При замыкании цепи катушки 9 электромагнита 10 втягивается якорь .5, пускается в ход заторможенный часовой механизм б, начинают перемещаться подвижные контакты 4 и переключаются контакты мгновенного действия 8, По истечении установленных выдержек времени под действием заводной пружины часового механизма сначала замыкается скользящий контакт 2, а затем замыкающий 1.Время с момента подачи напряжения на катушку до замыкания контактов 2 и 1 регулируется изменением их положения и указывается стрелками на шкале 3.С прекращением возбуждения катушки якорь и часовой механизм мгновенно возвращаются в исходное положение под действием пружины электромагнита. Одновременно с этим происходит завод часового механизма.Реле монтируется в пылезащищенном пластмассовом корпусе, состоящем из основания 11 и кожуха 7 из прозрачного материала.1 - силуминовое основание (заливка), служащее для сборки всего реле и как демпфер; 2- медная гильза-демпфер; 3 - отключающая пружина, регулируемая, 4 – упорная скоба с винтом; 5 - якорь; 6 - немагнитная прокладка; 7-тяга; 8 – U-образный сердечник; 9 - катушка; 10 - узел контактовРеле времени с электромагнитным замедлением (демпфером) выполняются только на постоянном токе, Замедление спадания потока (главным образом при отключении катушки) создается короткозамкнутым медным кольцом (см. гл. 1С). Подобные реле (рис. 2) отличаются моноблочной конструкцией, полностью собираемой и регулируемой до установки в комплектное устройство, В ранее выпускавшихся реле неподвижная часть магнитопровода выполнялась из двух деталей - скобы и сердечника. На стыке между деталями всегда оставался паразитный воздушный зазор. В современной конструкции неподвижная часть магнитопровода (сердечник) представляет собой одну деталь, изогнутую в виде буквы II. Паразитный зазор отсутствует. В данном случае при той же МДС в магнитопровода получается больший поток. В итоге у реле тех же габаритов выдержка времени возрастает Реле строятся на выдержку времени до 10 с.