Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по статистике.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
286.03 Кб
Скачать

18.Теория малых выборок.

Малые выборки в статистике

Под выборкой ниже понимается либо число образцов, поставленных на испытания в заданном режиме, либо произведение числа образцов на время испытаний DH (DeviceHours) [1]. Назначение объ╦ма выборки сопутствует циклу испытаний и статистическому анализу [2,3].

Один из основных вопросов математической статистики: какова должна быть минимально необходимая информация для получения требуемой достоверности результата. В частности, речь пойд╦т о числе образцов, поставленных на испытания при прочих равных условиях. Если подразумевать под условиями отсутствие каких-либо ограничений по точности конечного результата статистического анализа, то ответ на поставленный вопрос дал Р. Фишер [4,5].

Минимальное число образцов не может быть меньше 4. В противном случае, неизбежно возникает систематическая ошибка (смещение). Наличие смещения - первый признак отсутствия достаточности статистики [6]. Ряд авторов подтверждал вывод Фишера.

Исследования, касающиеся малых выборок, связаны с именами А.Н. Колмогорова, Дж. Неймана и А. Вальда. А.Н. Колмогоров установил критерий достаточности статистики при ограниченном числе наблюдений [7]. Дж. Нейман [8] создал новое направление в статистике, основное положение которого гласит: "Задача статистики - выявлять общий характер поведения объекта в условиях неопредел╦нности".

Такая позиция вполне согласуется с ограниченной возможностью делать слишком конкретные выводы при малых выборках. Идеи Дж. Неймана легли в основу Теории решений [6] - аппарата принятия гипотезы при явной неполноте информации.

А. Вальд разработал раздел статистики, именуемый последовательным анализом [9]. Необходимыйобъ╦м выборки, под которым понимается DH, определяется в процессе самих испытаний. Теоретически последовательная процедура требует для принятия решения меньшийобъ╦м выборки, чем при заранее фиксированном DH. Реально, при малой выборке дискретность параметра может сказаться отрицательно. Поэтому к такому выводу следует подходить с осторожностью [10].

Идеи Колмогорова, Неймана и Вальда в части малых выборок развиты в большом числе последующих работ, библиографию которых можно найти в фундаментальных трудах по статистике (например [11,12]).

В настоящее время прослеживается некоторое сужение области применения малых выборок при обработке результатов испытаний электронных компонентов (ЭК) [13]. Ведущие фирмы - изготовители ЭК при получении оценок над╦жности используют большие выборки [14-17]. Оценки типа FIT позволяют тогда сравнивать ЭК по разным классам изделий, технологиям, фирмам [18].

Задача испытаний и обработки результатов при малой выборке оста╦тся актуальной в случае:

  • оценки работоспособности и над╦жностиЭК в особых условиях применения в аппаратуре [19];

  • при необходимости расслоения выборки, например, в факторном анализе [20];

  • при распознавании образа и классификации.

19.Способы отбора единиц в выборочную совокупность.

В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.

Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.

Существуют следующие способы отбора единиц из генеральной совокупности: 1) индивидуальный отбор — в выборку отбираются отдельные единицы; 2) групповой отбор — в выборку попадают качественно однородные группы или серии изучаемых единиц; 3) комбинированный отбор — это комбинация индивидуального и группового отбора. Способы отбора определяются правилами формирования выборочной совокупности.

Выборка может быть:

  • собственно-случайная состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки. Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.

  • механическая состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки. Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке — каждая 20-я единица (1:0,05) и т.д. Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.

  • типическая – при которойгенеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность. Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность;

  • серийная - при которой генеральную совокупность делят на одинаковые по объему группы - серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию;

  • комбинированная - выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

В статистике различают следующие способы отбора единиц в выборочную совокупность:

  • одноступенчатая выборка - каждая отобранная единица сразу же подвергается изучению по заданному признаку (собственно-случайная и серийная выборки);

  • многоступенчатая выборка - производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы (типическая выборка с механическим способом отбора единиц в выборочную совокупность).

Кроме того различают:

  • повторный отбор – по схеме возвращенного шара. При этом каждая попавшая в выборку единица иди серия возвращается в генеральную совокупность и поэтому имеет шанс снова попасть в выборку;

  • бесповторный отбор – по схеме невозвращенного шара. Он имеет более точные результаты при одном и том же объеме выборки.