
- •Раздел I. Теоретические основы технологии
- •1. Понятия и определения в машиностроении
- •1. 1. Основные определения в машиностроении
- •1.2. Характеристика типов производств
- •2. Базирование в машиностроении
- •2.1 Основные понятия и определения
- •2.2 Основные сведения о базировании
- •2.3 Классификация баз в машиностроении
- •2.4. Выбор баз и принципы базирования
- •2.5 Погрешность базирования
- •2.6. Перерасчет размеров и допусков при смене баз
- •3. Расчет размерных цепей
- •3.1. Термины и определения, относящиеся
- •3.2. Методы расчета размерных цепей и задачи,
- •3.3. Расчет размерных цепей методом
- •3.3.1. Расчет размерных цепей способом “максимума – минимума”
- •3.3.2. Расчет размерных цепей способом равных допусков
- •3.3.3. Расчет размерных цепей способом равной точности
- •3.4. Расчет размерных цепей методом неполной
- •3.4.1. Способ групповой взаимозаменяемости (селективная сборка)
- •3.4.2. Способ пригонки
- •3.4.3. Способ регулирования
- •3.5. Теоретико – вероятностный метод расчета
- •4. Точность в машиностроении
- •4.1. Понятие точности в машиностроении
- •4.2 Погрешность от упругих деформаций технологической
- •4.3 Методы определения жесткости
- •4.4 Погрешность установки заготовок в приспособлении
- •5.1. Погрешность настройки технологической системы
- •5.1.3. Автоматическое получение размеров на настроенных
- •5.2 Погрешности, возникающие от размерного износа
- •5.3 Погрешности от температурных деформаций
- •5.3.1 Тепловые деформации станка
- •5.3.2 Тепловые деформации обрабатываемых заготовок
- •5.3.3 Температурные деформации режущего инструмента
- •6. Статистические методы исследования
- •6.1 Виды погрешностей и их характеристика
- •6.2 Законы распределения погрешностей
- •6.3 Оценка точности обработки методом
- •7. Формирование качества деталей машин
- •7.1 Показатели качества поверхностей деталей машин
- •7.2 Влияние способов и условий обработки
- •7.3 Влияние шероховатости и состояния поверхности
- •7.3.1 Влияние шероховатости поверхности на
- •7.3.2 Влияние деформационного упрочнения на износостойкость
- •8.1 Технологические методы повышения качества
- •8.1.1 Дробеструйная обработка
- •8.1.2 Наклепывание бойками
- •8.1.3 Обкатывание поверхности детали шариками или роликами
- •8.1.4 Раскатывание отверстий
- •8.1.5 Обработка стальными щетками
- •8.1.6 Наклепывание поверхности ударами шариков
- •8.1.7 Алмазное выглаживание
- •9 Производительность и себестоимость
- •9.1 Производительность и себестоимость обработки
- •9.2 Методы расчета экономичности вариантов
- •9.2.1 Бухгалтерский метод
- •9.2.2 Элементный метод
- •9.2.3 Расчет экономичности обработки с различными точностью и
- •9.2.4 Оценка экономической эффективности варианта
- •10 Оптимизация технологических процессов
- •10.2 Технологичность конструкции детали
- •10.3. Критерии оптимальности, система ограничений
- •Выбор технических ограничений
- •10.4. Методы оптимизации
- •11. Припуски на механическую обработку
- •11.1. Виды припусков
- •11.1.1. Методы определения припусков
- •12 Проектирование технологических
- •12.1 Исходные данные для проектирования технологического
- •12.2 Классификация технологических процессов
- •12.3 Концентрация и дифференциация операций
- •12.4. Анализ исходной информации при разработке технологического процесса изготовления детали
- •12.5 Последовательность разработки технологического процесса
- •13.1 Выбор типа заготовки
- •13.2 Специальные способы литья
- •13.2.1. Литье в оболочковые формы
- •13.2.2. Литье по выплавляемым моделям и сущность метода
- •13.2.4. Литье в металлические формы (кокили)
- •13.2.5. Центробежное литье
- •14.1 Выбор технологических баз
- •14.2. Установление маршрута механической обработки
- •14.3 Разделение технологического процесса на этапы
- •14.4 Формирование плана операций
- •14.5 Проектирование черновых и чистовых переходов
- •15.1 Расчет режимов резания при обработке детали
- •15.2 Нормирование технологического процесса
- •15.2.1 Задачи и методы нормирования
- •15.2.2 Классификация затрат рабочего времени
- •15.2.3 Структура нормы времени
- •15.2.4 Особенности нормирования многоинструментальной
- •15.3 Документирование технологических процессов
- •Виды и комплектность технологических документов при разработке техпроцесса сборки (гост 3. 111983 и гост 3. 112184)
- •Виды и комплектность технологических документов при разработке техпроцесса изготовления детали (гост 3. 111983 и гост3. 112184)
4.4 Погрешность установки заготовок в приспособлении
Погрешность установки – это часть погрешности, связанная с базированием и установкой заготовки на станок или в приспособление. Погрешность установки складывается из трех основных элементов: εб, εз и εп.
При механической обработке деталей, возникающие погрешности неизбежны, что связано с множеством неточностей, сопровождающих любой производственный процесс. Уже на начальной стадии разработки конструкции изделия, а именно при разработке рабочих чертежей, конструктор, учитывая отклонения размеров деталей в процессе производства, назначает допуски на их изготовление. На чертеже допуски указываются в виде предельных отклонений. Чем меньше разность этих отклонений, тем более ближе действительный размер к расчетному, и тем более совершенны машины, собираемые из деталей с такими размерами.
Погрешности возникают на всех этапах изготовления деталей и определяются многими факторами: установкой заготовок в приспособлениях, настройкой инструмента на заданный размер, не жесткостью технологической системы “станок – приспособление – режущий инструмент – обрабатываемая заготовка”, температурными деформациями и т. д. Все методы расчета точности обработки исходят из положения, что сумма возможных погрешностей, возникающих при обработке деталей не должна превышать величину допуска на получаемый размер. Из всех погрешностей, возникающих в процессе обработки, наиболее весомую часть составляют погрешности установки заготовки в приспособлении, обусловленные погрешностями базирования, закрепления и собственно самого приспособления.
При обработке плоских поверхностей деталей эта погрешность определяется по формуле
.
(4.10)
При обработке деталей класса тел вращения погрешность установки определяется
,
(4.11)
где εу − погрешность установки заготовки в приспособлении; εб – погрешность базирования заготовки в приспособлении; εз − погрешность, возникающая под действием сил закрепления; εп – погрешность положения заготовки в приспособлении относительно режущего инструмента, настроенного на заданный размер.
Иногда в расчет погрешности установки вводят поправочный коэффициент К, указывающий на то, что действительные размеры установочных элементов не равны предельным (обычно принимается К = 0,8…0,85). Тогда уравнение (4.11) принимает вид
. (4.12)
Если допуск на размер детали равен Тд, то должно выполняться условие
.
С учетом этого уравнение (4.12) принимает вид
(4.13)
При обработке плоских поверхностей уравнение (4.10) имеет вид
.
(4.14)
Погрешность базирования – это отклонение фактического положения заготовки относительно требуемого. Возникает погрешность базирования в результате не совмещения установочной и измерительной баз. По величине погрешность базирования представляет собой расстояние между предельными положениями проекций измерительной базы на направление выполняемого размера. Величина εб не является абстрактной, а относится к конкретно выполняемому размеру при данной схеме установки заготовки в приспособление.
Погрешность закрепления зависит от типа зажимного устройства приспособления и обрабатываемой детали. Усилия закрепления, как силы резания вызывают упругие деформации заготовок, порождающие погрешность их обработки. При постоянстве размеров заготовки и усилии закрепления погрешности формы деталей являются систематическими постоянными и могут быть вычислены по соответствующим формулам. Рассмотрим упругую деформацию тонкостенной втулки при обработке ее на токарном станке, закрепленную в трех кулачковом патроне (рис. 4.4).
При закреплении втулки в трех кулачковом патроне происходит ее деформация (рис. 4.4, а). В точке А (точке контакта кулачка с втулкой) происходит сжатие, а в точке В растяжение. После обработки, отверстие принимает правильную форму (рис. 4.4, б). После открепления втулки, отверстие примет вид, как показано на рис. 4.4, в. Это происходит в результате снятия упругих деформаций, которые были при сжатии втулки в кулачках патрона.
Погрешность формы отверстия втулки Δ определяется разностью наибольшего r1 и наименьшего r2 радиусов отверстия (рис. 4.4, в).
.
(4.15)
При закреплении в трех кулачковом патроне погрешность втулки Δ может быть велика. Например, для втулки 80х70х20 при величине усилия закрепления Q = 147 Н (Q = 15 кгс) погрешность формы отверстия составляет порядка 0,08 мм.
Погрешность формы обрабатываемой заготовки, связанная с ее упругой деформацией при закреплении в кулачковых патронах зависит от числа кулачков. По исследованиям проф. В. С. Корсакова увеличение количества кулачков в кулачковом патроне существенно уменьшает погрешность формы втулки. Например, если погрешность геометрической формы тонкостенной втулки после обработки с закреплением в двух кулачковом патроне принять за 100 %, то при закреплении в трех кулачковом патроне она составит 21 %, в четырех кулачковом патроне – 8 %, в шести кулачковом патроне – 2 %. Если форму кулачка патрона изготовить соответствующую форме закрепляемой заготовки и обеспечить их плотное прилегание к поверхности заготовки, то погрешность геометрической формы детали также снизится.
Рис. 5.1. Схема возникновения погрешности тонкостенной втулки
а – упругая деформация втулки после закрепления в трех кулачковом патроне;
б – форма отверстия после обработки; в – форма отверстия после открепления
втулки.
В определенных условиях обработки причинами возникновения погрешностей обрабатываемых заготовок могут быть: силы тяжести (деформация заготовки под действием собственной массы); центробежные силы (деформации неуравновешенных масс отдельных частей заготовки в момент их обработки) и остаточные напряжения в заготовке. При одностороннем снятии припуска или снятии неравномерного припуска в обрабатываемой заготовке происходит перераспределение внутренних напряжений, образующихся в исходных заготовках при их изготовлении (литьем, ковкой, штамповкой), а также при термической обработке и других технологических операциях.
ЛЕКЦИЯ № 5