Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вибрационная диагностика подшипников качения.doc
Скачиваний:
1
Добавлен:
28.11.2019
Размер:
2.76 Mб
Скачать

3.2. Подшипниковая вибрация вращающегося оборудования

Подшипники качения являются источниками вибрации разной природы во всех частотных областях, начиная с инфранизкой и за­канчивая ультразвуковой частотой.

Основной вклад в низкочастотную вибрацию роторных машин с подшипниками качения обычно вносят составляющие вибрации на частотах, кратных частоте вращения ротора, которые чаще всего не определяются «и свойствами подшипников, ни их со­стоянием, а связаны с качеством центровки машин, балансировки роторов и техническим состоянием соединительных муфт. Но ес­ли анализировать спектр низкочастотной вибрации машины, то в нем обычно присутствует большое число менее сильных составляющих, определяемых качеством изготовления и монтажа под­шипников, а также развитыми дефектами подшипников, возни­кающими вовремя эксплуатации машины.

Низкочастотная подшипниковая вибрация машины в целом имеет кинематическую или параметрическую природу. Кинемати­ческая вибрация возникает при движении инерционного тела по поверхности, с плавными неровностями. Так, если диаметр одного из тел качения больше, чем других, при прокатывании этим телом нижней точки неподвижного кольца подшипника, максимальной нагруженной силой тяжести ротора, ротор «подпрыгивает» с час­тотой вращения сепаратора:

где частота вращения вала; - радиус сепаратора; - радиус тел качения; - угол контакта тел качения с дорожками качения.

Такая же вибрация возникнет и в том случае, когда в одном месте изменено расстояние между телами качения, например, из-за большой степени износа одной перемычки сепаратора.

Если есть неровность в нагруженной точке наружного (непод­вижного) кольца подшипника, то в момент, когда в «ямку» попа­дает любое из тел качения, ротор «проваливается» с частотой прохождения тел качения через эту точку, которая называется частотой перекатывания тел качения по наружному кольцу:

где Z - число тел качения.

Если есть одна плавная неровность на внутреннем (вращаю­щемся) кольце подшипника, то ротор будет «проваливаться» с частотой его вращения, однако вибрация этого происхождения, как правило, существенно меньше вибрации, возбуждаемой, на­пример, остаточной неуравновешенностью ротора. Если же не­ровность имеет малую протяженность, в которую «проваливает­ся» лишь одно тело качения, то возникнет вибрация ротора и ма­шины в целом на частоте перекатывания тел качения по внутреннему кольцу:

Если же неровность имеет место на теле качения, ротор будет «проваливаться» дважды за оборот тела качения, т.е. появится вибрация ротора на удвоенной частоте вращения тел качения:

Подшипниковая вибрация параметрического происхождения возникает даже в бездефектных нагруженных подшипниках; из-за того что периодически меняется жесткость подшипника, так как ротор максимально нагружает лишь небольшую зону с телами качения, а число тел качения в этой зоне при вращении ротора меняется на одно с частотой перекатывания тел качения по на­ружному кольцу. Как следствие, ротор с этой частотой «провали­вается», приближаясь к неподвижному кольцу подшипника.

Перечисленные основные подшипниковые частоты определя­ют подшипниковую вибрацию не только на низких, но и на сред­них частотах, которые включают в себя прежде всего вибрацию не машины в целом, а подшипниковых узлов на гармониках этих частот с высокой кратностью. Среднечастотные периодические составляющие подшипниковой вибрации чаще всего имеют кине­матическую природу, но возникают не при протяженных и плав­ных неровностях поверхностей качения, а при неровностях не­большого размера с резкими краями. При хорошем качестве смазки и малых радиальных нагрузках на подшипник смазка сгла­живает края этих неровностей, что приводит к снижению среднечастотной вибрации подшипниковых узлов. В то же время в ре­альных машинах с нагруженными подшипниками среднечастотная подшипниковая вибрация может вырасти:

  • при ухудшении свойств смазки;

  • при дефектах сборки и монтажа машины, приводящих к росту статических или вращающихся нагрузок на подшипник;

  • при совпадении чистоты хотя бы одной из подшипниковых составляющих вибрации или их гармоник хотя бы с одним из мно­гочисленных резонансов машины или подшипникового узла.

Кроме гармонических составляющих подшипниковой вибрации на средних частотах присутствуют и случайные составляющие, определяемые гидродинамическими эффектами в смазочном слое подшипника. Это и гидродинамическое трение, и турбулент­ность смазочного слоя, и нелинейные эффекты, например, ло­кальная кавитация. Спектральный максимум случайных пульса­ций давления при идеальном масляном слое приходится на час­тоты, при которых длина волны в смазке сравнима с размером подшипника, однако существует зависимость этого максимума и от частоты вращения ротора. Кроме этого необходимо учитывать и частотную зависимость коэффициента преобразования пульса­ций давления в вибрацию неподвижных элементов подшипнико­вого узла. Как правило, максимум случайной вибрации, возбуж­даемой гидродинамическими эффектами в подшипниках качения, в низкооборотных машинах приходится на 2-5 кГц, а в высоко­оборотных может доходить 10-25 кГц. При наличии высокодоб­ротных резонансов в конструктивных элементах подшипников и машины случайные составляющие вибрации подшипниковых уз­лов по мощности могут быть существенно выше ее периодических составляющих.

Вибрация гидродинамического происхождения вносит сущест­венный вклад и в высокочастотную вибрацию подшипников каче­ния. Но если при работе подшипника в какие-то моменты проис­ходит разрыв масляной ..пленки и тело качения ударяется о не­подвижное кольцо подшипника, возникает случайная вибрация ударного происхождения, максимум энергии которой приходится на частоты в несколько раз выше, чем. у вибрации гидродинами­ческого происхождения. При наличии неровностей на поверхно­стях качения часто возникает и ударное взаимодействие поверх­ностей качения без полного разрыва масляной пленки. В этом случае частотный максимум энергии вибрации находится где-то посередине. Как правило, под вибрацией подшипников, возбуж­даемой упругими ударами при разрывах масляной пленки, пони­мается вибрация с энергетическим максимумом, приходящимся на частоты 30-60 кГц.

Есть ультразвуковая вибрация трения еще одной природы, ко­торая возникает при импульсном разрушении молекулярной структуры поверхностных слоев элементов трения. Эта импульс­ная вибрация возникает под нагрузкой при старении материалов в виде поверхностной волны на поверхности качения и носит на­звание акустической эмиссии. Обычно под акустической эмиссией понимаются колебательные импульсы нелинейной природы, а на практике принято исследовать и использовать в диагностических целях эмиссию статически нагруженных материалов и эмиссию при утечках жидкости или газа в сосудах и трубопроводах под давлением. Что касается методов диагностики элементов трения на основе анализа акустической эмиссии трения, то практическая невозможность разделить в подшипниках ударные составляющие вибрации линейного происхождения с максимумом спектральной плотности на частотах до ста килогерц, и нелинейного происхождения с максимумом спектральной плотности выше 100 кГц, огра­ничивает их возможности. На практике применяется объединен­ный метод диагностики, в котором ультразвуковая вибрация не делится на составляющие линейной и нелинейной природы, по­лучивший название SPM-метод (метод ударных импульсов).