
- •Раздел 1.
- •Тема 1.1–1.3 (2 часа).
- •1.2 Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений
- •1.3 Основные типы станций: тэц, кэс, гэс, аэс, гту, пгу. Возобновляемые источники энергии: ГэоЭс, вэс,
- •Тема 1.4 (1 час).
- •Раздел 2.
- •Тема 2.1 (1 час).
- •1.4.2 Качество электроэнергии
- •Классификация потребителей
- •2.1.1. Физические процессы в электрической дуге.
- •Раздел 2.
- •Тема 2.1 (2 час)
- •2.1.3. Отключение цепей переменного тока
- •2.1.4. Основные способы гашения дуги Способы гашения дуги в коммутационных аппаратах до 1000 в
- •Основные способы гашения дуги в аппаратах выше 1 кВ.
- •Тема 2.2 (0,5 часа).
- •Тема 2.3 (1 час)
- •Тема 2.4 (0,5 часа)
- •2.2.2. Тепловое действие тока. Определение Iдл. Доп .
- •2.3.1. Термическое действие токов кз.
- •2.3.2. Электродинимическое действие токов кз.
- •2.4.1. Координация токов кз Способы ограничения токов кз (секционирование, реакторы, трансформаторы с расщепленной обмоткой).
- •Раздел 3.
- •Тема 3.1 (2 часа).
- •5.2. Шинные конструкции, кэт, конструкции и выбор.
- •Ik(3) 20 кА и провода вл при iy 50 кА
- •Лекция 6.
- •Тема 3.1 (2 часа). Шины, изоляторы и контактные соединения План
- •3.1.3 Изоляторы, конструкции и выбор
- •3.1.4 Конструкции контактов шин и аппаратов. Основные характеристики контактных соединений.
- •Лекция 7.
- •Тема 3.2 (2 часа) Электрические аппараты. Коммутационные аппараты
- •3.2.1 Рубильники, пакетные выключатели и переключатели
- •3.2.2. Плавкие предохранители. Контакторы. Магнитные пускатели.
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп.Ож Iп0,
- •Магнитные пускатели
- •3.2.3. Воздушные автоматичесакие выключатели и узо
- •20 Защелка
- •Проверка автоматических выключателей
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп. Iп0;
- •Iвкл iуд; Та.Норм Та. Устройство защитного отключения
- •Лекция 8.
- •Тема 3.3 (2 часа) Электрические приборы. Коммутационные аппараты выше 1000 в. План.
- •3.3.1 Коммутационные аппараты на напряжение выше 1000 в
- •3.3.2 Выключатели нагрузки.
- •3.3.3. Вакуумные выключатели
- •Тема 3.3 (2 часа)
- •3.3.7. Приводы выключателей.
- •3.3.8. Выбор выключателей при проектировании. Новые тенденции применения выключателей.
- •Iном Iнорм.Расч;
- •Тема 3.3 (2 часа)
- •3.3.10 Короткозамыкатели и отделители. Принцип действия, конструкции, марки, условия выбора
- •Тема 3.3 (1 час)
- •Тема 3.4 (1 час)
- •3.3.11 Плавкие предохранители
- •Трансформаторы тока. Принцип действия, конструкции, марки. Векторные диаграммы, классы точности.
- •11.2.2. Векторные диаграммы, классы точности.
- •Лекция 12. Раздел 3. Тема 3.4 (2 час) Измерительные трансформаторы. План
- •12.1. Выбор трансформаторов тока.
- •12.2. Трансформаторы напряжения. Принцип действия, конструкции, марки.
- •Тема 3.5 (1 час)
- •13.1.1. Векторные диаграммы, классы точности.
- •13.2. Реакторы
- •13.2.1 Реакторы
- •Библиографический список
3.1.4 Конструкции контактов шин и аппаратов. Основные характеристики контактных соединений.
Места соприкосновения отдельных проводников в аппарате (или в электрической цепи) и само устройство, обеспечивающее их соединение, называют электрическим контактом.
По назначению и условиям работы контакты разделяют на неразмыкаемые (неразъемные или соединительные), которые служат только для соединения различных элементов электрической цепи, и размыкающие (коммутирующие), служащие для включения, отключения и переключения электрических цепей.
Неразмыкаемые контакты подразделяют: на неподвижные, в которых отсутствует взаимное перемещение контактных поверхностей (контактные соединения проводов, шин и проводников к электрическим аппаратам); на подвижные, в которых контактные поверхности могут иметь взаимное перемещение без нарушения электрического контакта (контакты скольжения или качения, применяемые, например, в коммутационных аппаратах). Размыкающие контакты по своему назначению разделяются: на главные, обеспечивающие прохождение длительных рабочих токов и кратковременных токов в аварийных режимах без повреждений; на дугогасительные, обладающие свойствами противостоять термическому действию дуги и электродинамическим силам (свариванию, вибрации, окислению), возникающим при коммутации токов в рабочих или аварийных режимах.
Эти функции контактов в коммутационных аппаратах часто совмещают (при рабочих токах до 1500 А).
Контакты различают по форме соприкасающихся поверхностей на точечные, линейные и плоские. Понятия точечный, линейный и плоский контакты условны, связаны с геометрическими формами и предполагают идеально гладкие поверхности.
Сопротивление контакта зависит не только от формы, наличия окислов и температуры соприкасающихся поверхностей, но и от силы, приложенной к контактным частям. Наилучшими показателями обладают точечные и линейные контакты, так как их проводимость оказывается удовлетворительной при небольших контактных давлениях. При этом увеличивается число контактных точек и частично разрушается слой окислов.
Наибольшая допустимая температура контактных соединений токоведущих шин и большинства аппаратов при длительных нагрузках составляет 7075 °С, так как при более высоких температурах сопротивление контакта весьма неустойчиво и может достигать значений, при которых возможны лавина нагрева, разрушение и сваривание контактных поверхностей.
Неразмыкаемые контактные соединения (рис. 3.8)выполняют в виде болтовых соединений, винтовых зажимов, обычной и холодной сварки (прессования). Их применяют для соединения медных и алюминиевых шин, проводов, присоединений аппаратов. В неразмыкаемых болтовых контактных соединениях термическое действие вследствие теплового расширения создает дополнительное напряжение в материале болтов, которое, складываясь с напряжением затяжки болта, может привести к остаточным деформациям и ослаблению контактного соединения. Поэтому контактные соединения такого типа проверяют на допустимость упомянутых дополнительных напряжений и в каждом случае регламентируют затяжку болтовых соединений
Рис. 3.8. Неразъемные неподвижные контакты
Реальные контактные поверхности всегда обладают некоторой шероховатостью, а их соприкосновение осуществляется лишь в некоторых бугорках или точках, через которые проходят токи. Это приводит к уменьшению площади сечения контактной поверхности (сужению). На контактных поверхностях имеется также тонкий слой из окислов, хлоридов, сульфидов и других соединений с малой проводимостью. А это приводит к тому, что контактные соединения обладают переходным сопротивлением Rк.
Наиболее широкое применение получили сварные соединения.
Размыкающие контактные соединения должны надежно работать в замкнутом состоянии, и поэтому на них распространяются общие требования, предъявляемые к контактам при длительных нагрузках и при кз, рис. 3.9.
а
б
в
г
д
е
Рис. 3.9. Размыкающиеся контакты.
а – щеточные; б – пальцевые; в – ламельные; г – торцевые; д – профиль ламелей; е – розеточные
Они должны дополнительно обладать дугостойкостью (способностью выдерживать воздействие дуги во время размыкания и замыкания) и способностью включать на кз (без приваривания контактов). Кроме того, все размыкающие контакты должны выдерживать определенное число операций включения и отключения без механических повреждений.
При рабочих токах 10001500 А и более трудно выполнить размыкающие контакты, которые удовлетворили бы всем требованиям. Поэтому выключатели конструируют с двумя системами контактов – рабочими и дугогасительными, включенными электрически параллельно. При включении прежде замыкаются дугогасительные контакты, затем рабочие, а при отключении, наоборот, сначала размыкаются рабочие, а затем – дугогасительные.
Для изготовления контактных соединений применяют различные материалы в зависимости от назначения контактов и предъявляемых требований, а именно: медь и ее сплавы для неразмыкаемых контактов (без покрытия и с антикоррозионным покрытием контактных поверхностей, серебрением, лужением, кадмированием) и для размыкаемых контактов при кратковременных режимах работы; серебро для главных (рабочих) контактов в аппаратах на большие токи в длительных режимах; алюминий (без покрытия или с серебрением, омеднением, армировкой медью) применяют для всех жестких (неразмыкаемых) контактных соединений (шины, провода); вольфрам и его сплавы при малых токах для контактов с большим количеством операции отключения и включения, а при средних и больших токах среднего и большого значении используют в качестве дугогасительных контактов при отключаемых токах до 100 кА и более; металлокерамику механическую смесь, получаемую спеканием порошков под давлением (серебро вольфрам, серебро молибден, серебро – графит и др.) для дугогасительных контактов на средние и большие отключаемые токи, а также для главных контактов на средние номинальные токи (600 А и более).
Самостоятельная работа:
Выбор изоляторов (0,5 часа).
Литература:
Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования/ Под ред. Б. Н. Неклепаева. М.: НЦ ЭНАС, 2002. –152 с. (РД 153-34.0-20.527-98)