
- •Раздел 1.
- •Тема 1.1–1.3 (2 часа).
- •1.2 Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений
- •1.3 Основные типы станций: тэц, кэс, гэс, аэс, гту, пгу. Возобновляемые источники энергии: ГэоЭс, вэс,
- •Тема 1.4 (1 час).
- •Раздел 2.
- •Тема 2.1 (1 час).
- •1.4.2 Качество электроэнергии
- •Классификация потребителей
- •2.1.1. Физические процессы в электрической дуге.
- •Раздел 2.
- •Тема 2.1 (2 час)
- •2.1.3. Отключение цепей переменного тока
- •2.1.4. Основные способы гашения дуги Способы гашения дуги в коммутационных аппаратах до 1000 в
- •Основные способы гашения дуги в аппаратах выше 1 кВ.
- •Тема 2.2 (0,5 часа).
- •Тема 2.3 (1 час)
- •Тема 2.4 (0,5 часа)
- •2.2.2. Тепловое действие тока. Определение Iдл. Доп .
- •2.3.1. Термическое действие токов кз.
- •2.3.2. Электродинимическое действие токов кз.
- •2.4.1. Координация токов кз Способы ограничения токов кз (секционирование, реакторы, трансформаторы с расщепленной обмоткой).
- •Раздел 3.
- •Тема 3.1 (2 часа).
- •5.2. Шинные конструкции, кэт, конструкции и выбор.
- •Ik(3) 20 кА и провода вл при iy 50 кА
- •Лекция 6.
- •Тема 3.1 (2 часа). Шины, изоляторы и контактные соединения План
- •3.1.3 Изоляторы, конструкции и выбор
- •3.1.4 Конструкции контактов шин и аппаратов. Основные характеристики контактных соединений.
- •Лекция 7.
- •Тема 3.2 (2 часа) Электрические аппараты. Коммутационные аппараты
- •3.2.1 Рубильники, пакетные выключатели и переключатели
- •3.2.2. Плавкие предохранители. Контакторы. Магнитные пускатели.
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп.Ож Iп0,
- •Магнитные пускатели
- •3.2.3. Воздушные автоматичесакие выключатели и узо
- •20 Защелка
- •Проверка автоматических выключателей
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп. Iп0;
- •Iвкл iуд; Та.Норм Та. Устройство защитного отключения
- •Лекция 8.
- •Тема 3.3 (2 часа) Электрические приборы. Коммутационные аппараты выше 1000 в. План.
- •3.3.1 Коммутационные аппараты на напряжение выше 1000 в
- •3.3.2 Выключатели нагрузки.
- •3.3.3. Вакуумные выключатели
- •Тема 3.3 (2 часа)
- •3.3.7. Приводы выключателей.
- •3.3.8. Выбор выключателей при проектировании. Новые тенденции применения выключателей.
- •Iном Iнорм.Расч;
- •Тема 3.3 (2 часа)
- •3.3.10 Короткозамыкатели и отделители. Принцип действия, конструкции, марки, условия выбора
- •Тема 3.3 (1 час)
- •Тема 3.4 (1 час)
- •3.3.11 Плавкие предохранители
- •Трансформаторы тока. Принцип действия, конструкции, марки. Векторные диаграммы, классы точности.
- •11.2.2. Векторные диаграммы, классы точности.
- •Лекция 12. Раздел 3. Тема 3.4 (2 час) Измерительные трансформаторы. План
- •12.1. Выбор трансформаторов тока.
- •12.2. Трансформаторы напряжения. Принцип действия, конструкции, марки.
- •Тема 3.5 (1 час)
- •13.1.1. Векторные диаграммы, классы точности.
- •13.2. Реакторы
- •13.2.1 Реакторы
- •Библиографический список
5.2. Шинные конструкции, кэт, конструкции и выбор.
Электрические машины и аппараты соединяют между собой при помощи шин – неизолированных проводников (из алюминия, меди или реже стали), укрепленных на изоляторах, или при помощи кабелей изолированных проводников (из алюминия или меди). Неизолированные проводники обладают большей нагрузочной способностью, проще в монтаже и эксплуатации, надежнее и экономичнее, поэтому их широко применяют в РУ всех напряжений в качестве сборных шин, служащих для приема и распределения электроэнергии, соединения аппаратов и присоединения генераторов, синхронных компенсаторов, трансформаторов и др.
В установках генераторного напряжения применяют жесткие алюминиевые шины прямоугольного сечения при токах до 4000 А (рис. 3.4, ав) или при больших токах фасонного сечения: коробчатого (рис. 3.4, г) и трубчатого.
Для соединения мощных генераторов с повышающими трансформаторами на блочных станциях широко применяют пофазно экранированные токопроводы, каждая фаза которых состоит из трубчатой шины, прикрепленной изоляторами к алюминиевому экрану-кожуху (рис.3. 4, д). Эти токопроводы изготовляют на заводах и комплектно поставляют на место установки, что сокращает время монтажа и удешевляет конструкцию. Выпускают так же комплектно и трехфазные токопроводы генераторного напряжения для линий собственных нужд тепловых электростанций.
Рис. 3.4.. Конструкция жестких шин.
а – однополосные; б – двухполосные; в – трехполосные; г – коробчатые; д – комплектный экранированный токопровод; 1 – экран; 2 – токоведущая шина; 3 – изолятор
В установках 35 кВ и выше при выполнении шинных конструкций учитывают возможность появления короны интенсивной ионизации воздуха вокруг провода, сопровождающейся образованием озона и окислов азота, разрушающих металлы и изоляцию. Корона приводит к большой потере активной мощности. Для снижения напряженности электрического поля и предотвращения появления короны шины выполняют круглой, трубчатой формы или проводник каждой фазы выполняют из нескольких параллельных проводников, сечения которых располагают по окружности.
Жесткие шины окрашивают эмалевыми красками: желтой фазу А; зеленой фазу В; красной фазу С. Окраска не только помогает распознать фазу установки, но усиливает теплоотдачу и увеличивает нагрузочную способность шин. Гибкие шины (провода) не окрашивают, а на фазных проводах, например, подвешивают кружки, окрашенные в соответствующие цвета.
Как сказано выше, в закрытых РУ 6-10 кВ ошиновка и сборные шины выполняются жесткими алюминиевыми шинами. Медные шины из-за высокой их стоимости не применяются даже при больших токовых нагрузках. При токах до 3000 А применяются одно- и двухполюсные шины. При больших токах рекомендуются шины коробчатого сечения, так как они обеспечивают меньшие потери от эффекта близости и поверхностного эффекта, а также лучшие условияохлаждения. Например, при токе 2650 А необходимы алюминиевые шины трехполосные размером 60 х 10 мм или коробчатые 2 х 695 мм с допустимым током 2670 А.В первом случае общее сечение шин составляет 1800 мм2, во втором 1390 мм2 . Как видно, допустимая плотность тока в коробчатых шинах значительно больше (1,92 вместо 1,47 А / мм2).
Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6-10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных фарфоровых изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продольное смещение шин при их удлинении вследствие нагрева. При большой длине шин устанавливаются компенсаторы из тонких полосок того же материала, что и шины Концы шин на изоляторе имеют скользящее крепление через овальные продольные отверстия и шпильку с пружинящей шайбой. В местах присоединения к аппаратам изгибают шины или устанавливают компенсаторы, чтобы усилие, возникающее при температурных удлинениях шин, не передавалось на аппарат. Соединение шин по длине обычно осуществляется сваркой.
Присоединение алюминиевых шин к медным (латунным) зажимам аппаратов производится с помощью переходных зажимов, предотвращающих образование электролитической пары медь - алюминий.
Для лучшей теплоотдачи и удобства эксплуатации шины окрашивают при переменном токе фаза А в желтый, фаза В - зеленый и фаза С - красный цвет; при постоянном токе положительная шина в красный, отрицательная - синий цвет.
Согласно §1.3.28 ПУЭ сборные шины электроустановок и ошиновка в пределах открытых и закрытых РУ всех напряжений по экономической плотности тока не проверяются.
Выбор сечения шин производится по нагреву (по допустимому току). При этом учитываются не только нормальные, но и послеаварийные режимы, а также режимы в период ремонтов и возможность неравномерного распределения токов между секциями шин. Условие выбора
Imax Iдоп
где Iдоп - допустимый ток на шины выбранного сечения с учетом поправки при расположении шин плашмя или температуре воздуха, отличной от принятой в таблицах (о,ном = 25°С). В последнем случае
Iдоп = Iдоп,ном доп - о / доп - доп
Для неизолированных проводов и окрашенных шин принято доп = 70°С; о,доп = 25°С. тогда
Iдоп = Iдоп,ном - о / 45,
где Iдоп,ном - допустимый ток по таблицам 1.12 при температуре воздуха о,ном = 25°С;о - действительная температура воздуха; доп – допустимая температура нагрева продолжительного режима (по § 1.3.22 ПУЭ для шин принято +70°С).
Проверка шин на термическую стойкость при КЗ производится по условию
к к,доп или q min q,
где к - температура шин при нагреве током КЗ; к,доп – допустимая температура нагрева шин при КЗ; q min – минимальное сечение по термической стойкости; q -выбранное сечение.
Проверка шин на электродинамическую стойкость.
Жесткие шины, укрепленные на изоляторах, представляют собой динамическую колебательную систему, находящуюся под воздействием электродинамических сил. В такой системе возникают колебания, частота которых зависит от массы и жесткости конструкций. Электродинамические силы, возникающие при КЗ, имеют составляющие, которые изменяются с частотой 50 и 100 Гц.
Электродинамическая стойкость шин обеспечивается при выполнении условия
доп ≥расч .
Для многополосных шин
расч = ф + n МПа
Сила взаимодействия между полосами
fn = КфIу2 / 4b * 10-7 H/м,
Напряжение в материале полос
n = fn Ln2 / 12 Wn МПа
Напряжение в материале шин от взаимодействия фаз
ф = -8 L2 iу(3) 2 / а Wф МПа
Выбор гибких шин и токопроводов
В РУ 35 кВ и выше применяются гибкие шины, выполненные проводами АС. Гибкие токопроводы для соединения генераторов и трансформаторов с РУ 6- 10 кВ выполняются пучком проводов, закрепленных по окружности в кольцах-обоймах. Два провода из пучка - сталеалюминиевые - несут в основном механическую нагрузку от собственного веса, гололеда и ветра. Остальные провода - алюминиевые - являются только токоведущими. Сечения отдельных проводов в пучке рекомендуется выбирать возможно большими (500, 600 мм2), так как это уменьшает число проводов и стоимость токопровода.
Гибкие провода применяются для соединения блочных трансформаторов с ОРУ.
Провода линий электропередач напряжением более 35 кВ, провода длинных связей блочных трансформаторов с ОРУ, гибкие токопроводы генераторного напряжения проверяются по экономической плотности тока
qэ = Iнорм / Jэ ,
где Iнорм - ток нормального режима (без перегрузок); / Jэ – нормированная плотность тока, А / мм2.
Найденное сечение округляется до ближайшего стандартного.
Выбранное сечение проверяется на термическое действие тока КЗ по к к, доп ;q min =Вк / С q.
При проверке на термическую стойкость проводников линий, оборудованных устройствами быстродействующего АПВ, должно учитываться повышение нагрева из-за увеличения продолжительности прохождения тока КЗ. Расщепленные провода ВЛ при проверке на нагрев в условиях КЗ рассматриваются как один провод суммарного сечения.
На электродинамическое действие тока КЗ проверяются гибкие шины РУ при