Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроэнергетика.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
15.91 Mб
Скачать

5.2. Шинные конструкции, кэт, конструкции и выбор.

Электрические машины и аппараты соединяют между собой при помощи шин – неизолированных проводников (из алюминия, меди или реже стали), укрепленных на изоляторах, или при помощи кабелей  изолированных проводников (из алюминия или меди). Неизолированные проводники обладают большей нагрузочной способностью, проще в монтаже и эксплуатации, надежнее и экономичнее, поэтому их широко применяют в РУ всех напряжений в качестве сборных шин, служащих для приема и распределения электроэнергии, соединения аппаратов и присоединения генераторов, синхронных компенсаторов, трансформаторов и др.

В установках генераторного напряжения применяют жесткие алюминиевые шины прямоугольного сечения при токах до 4000 А (рис. 3.4, ав) или при больших токах фасонного сечения: коробчатого (рис. 3.4, г) и трубчатого.

Для соединения мощных генераторов с повышающими трансформаторами на блочных станциях широко применяют пофазно экранированные токопроводы, каждая фаза которых состоит из трубчатой шины, прикрепленной изоляторами к алюминиевому экрану-кожуху (рис.3. 4, д). Эти токопроводы изготовляют на заводах и комплектно поставляют на место установки, что сокращает время монтажа и удешевляет конструкцию. Выпускают так же комплектно и трехфазные токопроводы генераторного напряжения для линий собственных нужд тепловых электростанций.

Рис. 3.4.. Конструкция жестких шин.

а – однополосные; б – двухполосные; в – трехполосные; г – коробчатые; д – комплектный экранированный токопровод; 1 – экран; 2 – токоведущая шина; 3 – изолятор

В установках 35 кВ и выше при выполнении шинных конструкций учитывают возможность появления короны  интенсивной ионизации воздуха вокруг провода, сопровождающейся образованием озона и окислов азота, разрушающих металлы и изоляцию. Корона приводит к большой потере активной мощности. Для снижения напряженности электрического поля и предотвращения появления короны шины выполняют круглой, трубчатой формы или проводник каждой фазы выполняют из нескольких параллельных проводников, сечения которых располагают по окружности.

Жесткие шины окрашивают эмалевыми красками: желтой фазу А; зеленой фазу В; красной фазу С. Окраска не только помогает распознать фазу установки, но усиливает теплоотдачу и увеличивает нагрузочную способность шин. Гибкие шины (провода) не окрашивают, а на фазных проводах, например, подвешивают кружки, окрашенные в соответствующие цвета.

Как сказано выше, в закрытых РУ 6-10 кВ ошиновка и сборные шины выполняются жесткими алюминиевыми шинами. Медные шины из-за высокой их стоимости не применяются даже при больших токовых нагрузках. При токах до 3000 А применяются одно- и двухполюсные шины. При больших токах рекомендуются шины коробчатого сечения, так как они обеспечивают меньшие потери от эффекта близости и поверхностного эффекта, а также лучшие условияохлаждения. Например, при токе 2650 А необходимы алюминиевые шины трехполосные размером 60 х 10 мм или коробчатые 2 х 695 мм с допустимым током 2670 А.В первом случае общее сечение шин составляет 1800 мм2, во втором 1390 мм2 . Как видно, допустимая плотность тока в коробчатых шинах значительно больше (1,92 вместо 1,47 А / мм2).

Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6-10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных фарфоровых изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продоль­ное смещение шин при их удлинении вследствие нагрева. При большой длине шин устанавливаются компенсаторы из тонких полосок того же материала, что и шины Концы шин на изоляторе имеют скользящее крепление через овальные продольные отверстия и шпильку с пружинящей шайбой. В местах присоединения к аппаратам изгибают шины или устанавливают компенсаторы, чтобы усилие, возникающее при температур­ных удлинениях шин, не передавалось на аппарат. Соединение шин по длине обычно осуществляется сваркой.

Присоединение алюминиевых шин к медным (латунным) зажимам аппаратов производится с помощью переходных зажимов, предотвращающих образование электролитической пары медь - алюминий.

Для лучшей теплоотдачи и удобства эксплуатации шины окрашивают при переменном токе фаза А в желтый, фаза В - зеленый и фаза С - крас­ный цвет; при постоянном токе положительная шина в красный, отрица­тельная - синий цвет.

Согласно §1.3.28 ПУЭ сборные шины электроустановок и ошиновка в пределах открытых и закрытых РУ всех напряжений по экономической плотности тока не проверяются.

Выбор сечения шин производится по нагреву (по допустимому току). При этом учитываются не только нормальные, но и послеаварийные режимы, а также режимы в период ремонтов и воз­можность неравномерного распределения токов между секциями шин. Условие выбора

Imax  Iдоп

где Iдоп - допустимый ток на шины выбранного сечения с учетом поправки при расположении шин плашмя или температуре воздуха, отличной от принятой в таблицах (о,ном = 25°С). В последнем случае

Iдоп = Iдоп,ном  доп - о / доп -  доп

Для неизолированных проводов и окрашенных шин принято  доп = 70°С;  о,доп = 25°С. тогда

Iдоп = Iдоп,ном   - о / 45,

где Iдоп,ном - допустимый ток по таблицам 1.12 при температуре воздуха о,ном = 25°С;о - действительная температура воздуха; доп – допустимая температура нагрева продолжительного режима (по § 1.3.22 ПУЭ для шин принято +70°С).

Проверка шин на термическую стойкость при КЗ производится по условию

к  к,доп или q min  q,

где к - температура шин при нагреве током КЗ; к,доп – допустимая температура нагрева шин при КЗ; q min минимальное сечение по термической стойкости; q -выбранное сечение.

Проверка шин на электродинамическую стойкость.

Жесткие шины, укрепленные на изоляторах, представляют собой дина­мическую колебательную систему, находящуюся под воздействием элек­тродинамических сил. В такой системе возникают колебания, частота которых зависит от массы и жесткости конструкций. Электродинамические силы, возникающие при КЗ, имеют составляющие, которые изменяются с частотой 50 и 100 Гц.

Электродинамическая стойкость шин обеспечивается при выполнении условия

доп ≥расч .

Для многополосных шин

расч = ф + n МПа

Сила взаимодействия между полосами

fn = КфIу2 / 4b * 10-7 H/м,

Напряжение в материале полос

n = fn Ln2 / 12 Wn МПа

Напряжение в материале шин от взаимодействия фаз

ф = -8 L2 (3) 2 / а Wф МПа

Выбор гибких шин и токопроводов

В РУ 35 кВ и выше применяются гибкие шины, выполненные прово­дами АС. Гибкие токопроводы для соединения генераторов и трансформаторов с РУ 6- 10 кВ выполняются пучком проводов, закреплен­ных по окружности в кольцах-обоймах. Два провода из пучка - сталеалюминиевые - несут в основном механическую нагрузку от собственного веса, гололеда и ветра. Остальные провода - алюминиевые - являются только токоведущими. Сечения отдельных проводов в пучке рекомендуется выби­рать возможно большими (500, 600 мм2), так как это уменьшает число проводов и стоимость токопровода.

Гибкие провода применяются для соединения блочных трансформа­торов с ОРУ.

Провода линий электропередач напряжением более 35 кВ, провода длин­ных связей блочных трансформаторов с ОРУ, гибкие токопроводы гене­раторного напряжения проверяются по экономической плотности тока

qэ = Iнорм / Jэ ,

где Iнорм - ток нормального режима (без перегрузок); / Jэ – нормированная плотность тока, А / мм2.

Найденное сечение округляется до ближайшего стандартного.

Выбранное сечение проверяется на термическое действие тока КЗ по к к, доп ;q min =Вк / С q.

При проверке на термическую стойкость проводников линий, оборудован­ных устройствами быстродействующего АПВ, должно учитываться повы­шение нагрева из-за увеличения продолжительности прохождения тока КЗ. Расщепленные провода ВЛ при проверке на нагрев в условиях КЗ рас­сматриваются как один провод суммарного сечения.

На электродинамическое действие тока КЗ проверяются гибкие шины РУ при