Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроэнергетика.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
15.91 Mб
Скачать

2.3.2. Электродинимическое действие токов кз.

Электродинамическая стойкость определяется механическими напряжениями в материале проводников и изоляторов, которые не должны быть выше допускаемых напряжений, но последние нормируются по-разному, а именно:

для токоведущих шин

;

опорных изоляторов

;

аппаратов

,

где max, расч  максимальное расчетное напряжение в материале шин, МПа; доп  допускаемое напряжение в материале шин (для алюминия марки AT доп =70 МПа, стали доп=160 МПа); Fрасч  расчетная электродинамическая сила, приложенная в головке изолятора, Н; Fразр  минимальная разрушающая сила (нагрузка) на изгиб, Н (задается заводом-изготовителем); Iдин, max  номинальный ток электродинамической стойкости аппарата, кА; Iуд, max  ударный ток КЗ при повреждении в расчетной точке, кА.

Обычно для аппаратов Iдин, max задают заводы, а у петлевых и стержневых трансформаторов тока нормируется кратность электродинамической стойкости . Для выключателей по ГОСТ 687–70 нормируется сквозной предельный ток, определяемый начальным действующим значением его периодической составляющей Iп0.

Для расчета электродинамической стойкости шин необходимо, прежде всего, найти величины и выяснить характер действующих сил.

Если два параллельных тонких и прямолинейных проводника 1 и 2 расположены в одной плоскости на расстоянии а и обтекаются токами , то результирующая сила, действующая на участке проводника 1 длиной l (например между опорными изоляторами), будет равна:

где плюс берется при одинаковом направлении токов i1, i2 (сила стремится сблизить проводники), минус – при разном (сила стремится удалить проводники).

Соответственно этому при двухфазном КЗ ( ) получаем

.

Наибольшие электродинамические силы действуют на среднюю фазу (расположение шин в одной плоскости) при трехфазном КЗ и поэтому принимаются за расчетные:

.

В последнем выражении множитель обусловлен фазовым сдвигом между взаимодействующими токами, а коэффициент формы kф учитывает геометрию проводников и их взаимное расположение. Его величина может быть больше или меньше единицы в зависимости от формы поперечного сечения шин и их взаимного расположения.

.

Если считать шину многопролетной балкой, лежащей на жестких опорах и подвергающейся воздействию равномерно распределенной статической нагрузки, то в этих условиях наибольший изгибающий момент, Нм действующий на шину, определяют по формуле

,

где W  момент сопротивления шины относительно оси, перпендикулярной направлению действия силы, м3.

Сила, действующая на шины от начала КЗ до его отключения, переменна. Вместе с тем конструкция шин является механически упругой системой, обладающей собственной частотой колебаний. Если частота вынуждающей силы и собственная частота колебаний упругой системы будут близки или совпадут, то возникнут условия для механического резонанса, в результате которого напряжения в материале шин увеличатся и возможно разрушение конструкции.

2.4.1. Координация токов кз Способы ограничения токов кз (секционирование, реакторы, трансформаторы с расщепленной обмоткой).

Рост генераторных мощностей современных энергосистем, создание мощных энергообъединений, увеличение мощностей нагрузок приводят, с одной стороны, к росту электровооруженности и производительности труда, к повышению надежности и устойчивости электроснабжения, а с другой - к существенному повышению уровней токов КЗ. Максимальный уровень токов КЗ для сетей 35 кВ и выше ограничивается параметрами выключателей, трансформаторов, проводников и другого электрооборудования, условиями обеспечения устойчивости энергосистемы, а в сетях генераторного напряжения, в сетях собственных нужд и в распределительных сетях 3-20 кВ - параметрами электрических аппаратов и токопроводов, термической стойкостью кабелей, устойчивостью двигательной нагрузки.

Таким образом, уровень тока КЗ, повышающийся в процессе развития современной электроэнергетики, имеет в своем росте ряд ограничений, которые необходимо учитывать. Конечно, аппаратуру и электрические сети можно усилить в соответствии с новым уровнем токов КЗ, пере­вести на более высокое напряжение, однако это в ряде случаев приводит к таким экономическим и техническим трудностям, что себя не оправ­дывает.

В настоящее время разработан комплекс мер, который позволяет регулировать уровни токов КЗ, ограничивать их при развитии электроустановок. Однако применение таких средств не является самоцелью и оправданно только после специального технико-экономического обоснования.

Наиболее распространенными и действенными способами ограничения токов КЗ являются: секционирование электрических сетей; установка токоограничивающих реакторов; широкое использование трансформаторов с расщепленными обмотками низшего напряжения.

Первый способ является эффективным средством, которое позволяет уменьшить уровни токов КЗ в реальных электрических сетях в 1,5 - 2 раза. Пример секционирования электроустановки с целью ограничения токов КЗ показан на рис. 2.9.

Когда выключатель QВ включен (рис. 2.9,а), ток КЗ от генераторов G1 и G2 проходит непосредственно к месту повреждения и ограничен лишь сопротивлением генераторов и трансформаторов соответствующих энерго­блоков.

Если выключатель QВ отключен (рис. 2.9,б), в цепь КЗ дополнительно включается сопротивление линий. Ток КЗ от генераторов G1 и G2 при этом резко снижается по сравнению с предыдущим случаем.

Рис. 2.9. Распределение токов КЗ:

а – секционный выключатель включен; б - секционный выключатель отключен

В месте секционирования образуется так называемая точка деления сети. В мощной энергосистеме с большими токами КЗ таких точек может быть несколько.

Секционирование электрической сети обычно влечет за собой увеличение потерь электроэнергии в линиях электропередачи и трансформаторах в нормальном режиме работы, так как распределение потоков мощности при этом может быть неоптимальным. По этой причине решение о секционировании должно приниматься после специального технико-экономического обоснования.

В распределительных электрических сетях 10 кВ и ниже широко применяется раздельная работа секций шин, питающихся от различных трансформаторов подстанции (рис. 2.10). Основной причиной, определяю­щей такой режим работы, является требование снижения токов КЗ, хотя и в этом случае отказ от непосредственной параллельной работы трансформаторов имеет свои отрицательные последствия: разные уровни напряжения по секциям, неравномерная загрузка трансформаторов и т.п.

Рис. 2.10. Совместная (а) и раз-

дельная (б) работа трансфор-

маторов на подстанции

При мощности понижающего трансформатора 25 МВ*А и выше применяют расщепление обмотки низшего напряжения на две, что позволяет увеличить сопротивление такого трансформатора в режиме КЗ примерно в 2 раза по сравнению с трансформатором без расщепления обмотки.

К специальным техническим средствам ограничения токов КЗ в первую очередь относятся токоограничивающие реакторы.

Самостоятельная работа:

              1. Координация токов КЗ (1 час).

Литература:

    1. Неклепаев, Б.Н. Электрическая часть станций и подстанций / Б. Н. Неклепаев – М.: Энергоатомиздат, 1986.

    1. Рожкова, Л. Д. Электрооборудование станций и подстанций: учебник для техникумов /Л. Д. Рожкова, В. С. Козулин – 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1987 – 648с.

  1. Коваленко И.В. Электроэнергетика. Производство электроэнергии: учеб. Пособие / И.В. Коваленко, А.А. Егонский. – Красноярск: ИПЦ КГТУ, 2006.