
- •Лекция 1. Раздел 1. Тема 1.1-1.3 (2 часа) введение. План
- •Краткая историческая справка о развитии электроэнергетики
- •Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений
- •Основные типы станций: тэц, кэс, гэс, аэс, гту, пгу. Возобновляемые источники энергии: ГэоЭс, вэс, пэс и др.
- •2. Качество электроэнергии
- •3. Классификация потребителей
- •Лекция 2. Раздел 2. Тема 2.1 (1 час) электрофизические процессы в проводниках и аппаратах План
- •Лекция 3. Раздел 2. Тема 2.1 (2 час) электрофизические процессы в проводниках и аппаратах План
- •Способы гашения дуги в коммутационных аппаратах до 1000 в
- •Лекция 4. Раздел 2. Тема 2.2-2.4 (2 часа) Действие токов на проводники и аппараты. План
- •Нагрев проводников токами нормального режима.
- •Координация токов кз в современных энергосистемах
- •Лекция 5. Раздел 3. Тема 3.1 (2 час) Шины, изоляторы и контактные соединения. План
- •4.7.2. Кабельные линии
- •3.5.3. Шинные конструкции
- •Лекция 6. Раздел 3. Тема 3.1 (2 час) Шины, изоляторы и контактные соединения. План
- •Изоляторы для распределительных устройств и аппаратов
- •4.6. Контакты электрических аппаратов и проводников
- •Лекция 7. Раздел 3. Тема 3.2 (2 час) Электрические аппараты. План
- •Коммутационные аппараты на напряжение до 1000 в
- •Рубильники и переключатели
- •Предохранители
- •Контакторы
- •Магнитные пускатели
- •Автоматические выключатели
- •20 Защелка
- •Устройство защитного отключения
- •Лекция 8. Раздел 3. Тема 3.3 (2 час) Коммутационные аппараты выше 1000 в. План
- •Коммутационные аппараты на напряжение выше 1000 в
- •Многообъемные масляные выключатели
- •4.4.2. Маломасляные выключатели
- •Выключатель нагрузки
- •Вакуумные выключатели
- •Лекция 9. Раздел 3. Тема 3.3 (2 час) Коммутационные аппараты выше 1000 в. План
- •Выключатели высоковольтные элегазовые
- •Лекция 10. Раздел 3. Тема 3.3 (2 час) Коммутационные аппараты выше 1000 в. План
- •Разъединители
- •4.4.9. Отделители и короткозамыкатели
- •Лекция 11. Раздел 3. Тема 3.3 (1 час) Коммутационные аппараты выше 1000 в. План
- •Предохранители
- •Лекция 11. Раздел 3. Тема 3.4 (1 час) Измерительные трансформаторы. План
- •Трансформатор тока
- •Лекция 12. Раздел 3. Тема 3.4 (2 час)
- •Измерительные трансформаторы.
- •Трансформаторы напряжения.
- •4.9. Трансформатор напряжения
- •Библиографический список
4.6. Контакты электрических аппаратов и проводников
Места соприкосновения отдельных проводников в аппарате (или в электрической цепи) и само устройство, обеспечивающее их соединение, называют электрическим контактом.
По назначению и условиям работы контакты разделяют на неразмыкаемые (неразъемные или соединительные), которые служат только для соединения различных элементов электрической цепи, и размыкающие (коммутирующие), служащие для включения, отключения и переключения электрических цепей.
Неразмыкаемые контакты подразделяют: на неподвижные, в которых отсутствует взаимное перемещение контактных поверхностей (контактные соединения проводов, шин и проводников к электрическим аппаратам); на подвижные, в которых контактные поверхности могут иметь взаимное перемещение без нарушения электрического контакта (контакты скольжения или качения, применяемые, например, в коммутационных аппаратах). Размыкающие контакты по своему назначению разделяются: на главные, обеспечивающие прохождение длительных рабочих токов и кратковременных токов в аварийных режимах без повреждений; на дугогасительные, обладающие свойствами противостоять термическому действию дуги и электродинамическим силам (свариванию, вибрации, окислению), возникающим при коммутации токов в рабочих или аварийных режимах.
Эти функции контактов в коммутационных аппаратах часто совмещают (при рабочих токах до 1500 А).
Контакты различают по форме соприкасающихся поверхностей на точечные, линейные и плоские. Понятия точечный, линейный и плоский контакты условны, связаны с геометрическими формами и предполагают идеально гладкие поверхности.
Рис. 4.34. Неразъемные неподвижные контакты
Реальные контактные поверхности всегда обладают некоторой шероховатостью, а их соприкосновение осуществляется лишь в некоторых бугорках или точках, через которые проходят токи. Это приводит к уменьшению площади сечения контактной поверхности (сужению). На контактных поверхностях имеется также тонкий слой из окислов, хлоридов, сульфидов и других соединений с малой проводимостью. А это приводит к тому, что контактные соединения обладают переходным сопротивлением Rк.
а
б
в
г
д
е
Рис. 4.35. Размыкающиеся контакты.
а – щеточные; б – пальцевые; в – ламельные; г – торцевые; д – профиль ламелей; е – розеточные
Сопротивление контакта зависит не только от формы, наличия окислов и температуры соприкасающихся поверхностей, но и от силы, приложенной к контактным частям. Наилучшими показателями обладают точечные и линейные контакты, так как их проводимость оказывается удовлетворительной при небольших контактных давлениях. При этом увеличивается число контактных точек и частично разрушается слой окислов.
Наибольшая допустимая температура контактных соединений токоведущих шин и большинства аппаратов при длительных нагрузках составляет 7075 °С, так как при более высоких температурах сопротивление контакта весьма неустойчиво и может достигать значений, при которых возможны лавина нагрева, разрушение и сваривание контактных поверхностей.
Неразмыкаемые контактные соединения выполняют в виде болтовых соединений, винтовых зажимов, обычной и холодной сварки (прессования). Их применяют для соединения медных и алюминиевых шин, проводов, присоединений аппаратов. В неразмыкаемых болтовых контактных соединениях термическое действие вследствие теплового расширения создает дополнительное напряжение в материале болтов, которое, складываясь с напряжением затяжки болта, может привести к остаточным деформациям и ослаблению контактного соединения. Поэтому контактные соединения такого типа проверяют на допустимость упомянутых дополнительных напряжений и в каждом случае регламентируют затяжку болтовых соединений
Наиболее широкое применение получили сварные соединения.
Размыкающие контактные соединения должны надежно работать в замкнутом состоянии, и поэтому на них распространяются общие требования, предъявляемые к контактам при длительных нагрузках и при кз. Они должны дополнительно обладать дугостойкостью (способностью выдерживать воздействие дуги во время размыкания и замыкания) и способностью включать на кз (без приваривания контактов). Кроме того, все размыкающие контакты должны выдерживать определенное число операций включения и отключения без механических повреждений.
При рабочих токах 10001500 А и более трудно выполнить размыкающие контакты, которые удовлетворили бы всем требованиям. Поэтому выключатели конструируют с двумя системами контактов – рабочими и дугогасительными, включенными электрически параллельно. При включении прежде замыкаются дугогасительные контакты, затем рабочие, а при отключении, наоборот, сначала размыкаются рабочие, а затем – дугогасительные.
На рис. 4.35 представлены наиболее распространенные конструкции размыкаемых контактов, применяемые в коммутационных электрических аппаратах.
Для изготовления контактных соединений применяют различные материалы в зависимости от назначения контактов и предъявляемых требований, а именно: медь и ее сплавы для неразмыкаемых контактов (без покрытия и с антикоррозионным покрытием контактных поверхностей, серебрением, лужением, кадмированием) и для размыкаемых контактов при кратковременных режимах работы; серебро для главных (рабочих) контактов в аппаратах на большие токи в длительных режимах; алюминий (без покрытия или с серебрением, омеднением, армировкой медью) применяют для всех жестких (неразмыкаемых) контактных соединений (шины, провода); вольфрам и его сплавы при малых токах для контактов с большим количеством операции отключения и включения, а при средних и больших токах среднего и большого значении используют в качестве дугогасительных контактов при отключаемых токах до 100 кА и более; металлокерамику механическую смесь, получаемую спеканием порошков под давлением (серебро вольфрам, серебро молибден, серебро – графит и др.) для дугогасительных контактов на средние и большие отключаемые токи, а также для главных контактов на средние номинальные токи (600 А и более).