
- •1. Магнитное поле в веществе. Вектор намагничивания
- •2. Описание поля в магнетике. Напряженность магнитного поля.
- •3. Элементарные носители магнетизма
- •4. Диамагнетизм
- •5. Парамагнетизм
- •1. Ферромагнетизм
- •1. Общая характеристика уравнений
- •2. Первое уравнение Максвелла
- •3. Второе уравнение Максвелла. Ток смещения
- •4. Полная система уравнений Максвелла
- •1. Гармонические колебания в электрической системе.
- •2. Сложение двух гармонических колебаний одного направления
- •3. Сложение двух перпендикулярных гармонических колебаний
- •4. Затухающие колебания
- •5. Характеристики затухания
- •6. Вынужденные колебания
- •1. Образование и распространение волн в упругой среде
- •2. Уравнение бегущей волны
- •3. Энергия упругих волн
- •4. Cтоячие волны
- •5. Свойства электромагнитных волн
- •6. Излучение электромагнитных волн
- •7. Шкала электромагнитных волн
- •Волновая оптика
- •1. Предмет оптики
- •2. Световая волна
- •3. Интерференция волн. Когерентность.
- •4. Интерференция света.
- •5. Расстояние между интерференционными максимумами.
- •6. Интерференция в тонких пленках
- •1. Принцип Гюйгенса-Френеля
- •2. Метод зон Френеля. Прямолинейное распространение света
- •3. Дифракция на щелях
- •4. Дифракция света от многих щелей. Дифракционная решетка
- •1. Естественный и поляризованный свет
- •2. Поляризация света при прохождении через кристаллы
- •3. Получение поляризованного света
- •4. Закон Малюса
- •5. Поляризация при отражении и преломлении
- •6. Вращение плоскости поляризации
- •7. Применение поляризации
- •1. Проблема теплового излучения
- •2. Законы теплового излучения абсолютно черного тела
- •3. "Ультрафиолетовая катастрофа"
- •4. Квантовая гипотеза Планка
- •1. Фотоэффект
- •2. Фотон и его свойства
- •Элементы атомной физики и квантовой механики
- •1. Волновые свойства частиц
- •2. Физический смысл волн де Бройля.
- •3. Соотношение неопределенностей
- •1. Волновая функция
- •2. Уравнение Шредингера
- •3. Частица в потенциальной яме
- •1. Корпускулярная модель атома.
- •2. Квантовомеханическое описание водородного атома
- •3. Спин электрона
- •4. Принцип Паули
- •5. Электронная структура атомов
- •6. Рентгеновские лучи
- •Элементы ядерной физики
- •1. Состав атомного ядра
- •2. Энергия связи ядра
- •3. Ядерные силы
- •4. Модели ядра
- •1. Явление радиоактивности
- •2. Закон радиоактивного распада
- •3. Альфа - распад
- •4. Бета-распад
- •5. Уравнение ядерной реакции
- •6. Законы сохранения в ядерных реакциях
- •7. Составное ядро
- •8. Типы ядерных реакций
- •9. Трансурановые элементы
- •10. Реакция деления ядра
- •11. Цепная реакция деления
2. Фотон и его свойства
Итак, наряду с волновыми свойствами как интерференция и дифракция, свет обладает и такими, для объяснения которых пришлось предположить, что колеблющиеся заряды в атомах могут излучать и поглощать свет только определенными порциями энергии - квантами. Величина энергии кванта равна
(32.10)
В тех случаях, когда необходимо подчеркнуть корпускулярные свойства света, говорят о световых частицах - фотонах, квантами же называют порцию энергии.
Если предположить, что свет распространяется в пространстве как поток особых частиц, то следует считать, что они обладают массой и импульсом. Согласно взаимосвязи массы и энергии в теории относительности (лк. 6) E=mc2, поэтому каждому фотону можно приписать массу
(32.11)
Отличие
этой массы от массы макрочастиц в том,
что фотон не имеет массы покоя m0.
Это следует из формулы (лк. 6)
.
Для фотона V=С
и β=1, так что
.
Для получения конечного значения m
необходимо условие: m0=0.
Это и понятно, т.к. фотон - частица
движения. Импульс фотона можно найти
из соотношения (лк. 6)
Т.к.
m0=0,
то
(32.12)
Это выражение можно переписать:
(32.13)
где
Если ввести в рассмотрении волновой вектор к, совпадающий по направлению с распространением света, то
(32.14)
Между
.длиной волны света λ и импульсом фотона
существует связь, которая устанавливается
из соотношения
.
Подставив это в (32.12), находим
(32.15)
Итак, фотон обладает энергией, массой и импульсом. Открытие у света корпускулярных свойств но отрицает наличие у него волновых. Корпускулярные свойства проявляются, главным образом, при излучении и поглощении света особенно большой частоты.
Элементы атомной физики и квантовой механики
Лекция 43 |
Опытное обоснование корпускулярно-волнового дуализма вещества. Формула Луи де Бройля. |
|
Соотношение неопределённостей Гейзенберга. |
1. Волновые свойства частиц
Как видно из предыдущей лекции, между светом и частицами существует много общего: свет обладает рядом корпускулярных свойств, которые характеризуются теми же величинами, что и свойства частиц. В 1924 г. де Бройль высказал предположение, что если свет обладает корпускулярными свойствами, то и частицы в свою очередь должны обладать волновыми свойствами. При этом формулы, описывавшие свойства света и частиц, должны совпадать. Так, длина волны частицы о массой т, движущейся со скоростью v, должна определяться формулой (32.15), т.е.
(33.1)
Эту
волну, связанную с движущейся частицей,
принято называть волной де Бройля.
Существование этих волн может быть
установлено лишь на опыте, где проявляется
волновая природа частиц. Т.к. волновые
свойства света проявляются в явлениях
интерференции и дифракции, то для частиц,
если гипотеза де Бройля верна, также
должны обнаруживаться эти явления.
Однако вследствие очень малых длин
волн де Бройля обнаружить волновые
свойства частиц значительно трудней,
чем у света. Простые вычисления по
формуле (33.1) дают, например, для электронов
в электронно-лучевой трубке значения
λ: скорость электрона определяется
соотношением
,
где U
- ускоряющее напряжение (~ 2 кВ), откуда
и
,
в то время как длина волны видимого
света ~ 5500А.
Как
известно, дифракция обнаруживается,
когда размеры препятствий соизмеримы
с длиной волны (лк.30 п.2). Поэтому дифракцию
частиц можно обнаружить не на оптической
дифракционной решетке, а на кристалле,
расстояние между атомами в котором
составляет, ~10-10м.
Такие
опыты были проделаны и подтвердили
наличие у частиц волновых свойств. Это
опыты К.Д.Дэвисона и Л.X.
Джермера по дифракции электронов на
кристалле Li, Дж.П.Томпсона и П
.С.Тартаковского
по дифракции электронов с помощью
фольги. Впоследствии такие опыты были
проделаны с пучками нейтронов и протонов,
а О.Штерн провел опыты с атомами гелия
и натрия. Схема одного из таких опытов
приведена на рис. 33.1. Здесь 1 - электронная
пушка, 2 - электронный пучок, 3 - фольга
(толщина 10-5+10-6см),
4 - фотопластинка. После проявления на
фотопластинке был виден ряд светлых и
темных концентрических колец, т.е.
типичная дифракционная картина, по
которой можно было рассчитать длину
волны и сравнить с (33.1). Оказалось, что
результаты таких расчетов хорошо
совпадают, и, следовательно, гипотеза
де Бройля подтверждается экспериментально.