
- •Основные компоненты
- •Классификация материнских плат по форм-фактору
- •Определение модели
- •Технологии энергосбережения
- •2. Физические характеристики компонентов эвм. Центральный процессор. Память, объем памяти
- •Введение Описание процесса цифровой связи
- •Помехоустойчивое кодирование Общие сведения
- •Линейные блоковые коды
- •Описание процессов кодирования и декодирования Структура кодовых векторных пространств
- •Кодирование
- •Декодирование
- •Разновидности ошибок
- •Принцип действия
- •При подаче напряжения на электроды благодаря пьезоэлектрическому эффекту происходит изгибание, сжатие или сдвиг в зависимости от того, каким образом вырезан Принцип работы
- •Эквивалентная схема
- •Кварцевые генераторы на гармониках
- •Автогенераторы типа rc
- •Параллельные компьютеры и супер-эвм
- •Супер-эвм и сверхвысокая производительность: зачем?
- •Увеличение производительности эвм, за счет чего?
- •Параллельная обработка данных на эвм
- •Краткая история появления параллелизма в архитектуре эвм
- •А что же сейчас используют в мире?
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Разделяемые ресурсы процессора Структура оперативной памяти.
- •Функциональные устройства
- •Секция управления процессора
- •Препятствия для векторизации
- •Анализ узких мест в архитектуре компьютера cray c90 (один процессор)
- •Суммарное влияние отрицательных факторов на производительность компьютера
- •5. Виды мк: встраиваемые мк, мк с вп, цифровые сигнальные процессоры, их назначение, структурные схемы. Гарвардская и Принстонская архитектуры. Модульная организация мк (привести структурную схему)
- •Архитектура фон Неймана
- •Принципы фон Неймана
- •Компьютеры, построенные на принципах фон Неймана
- •Узкое место архитектуры фон Неймана
- •Отличие от архитектуры фон Неймана
- •Модифицированная гарвардская архитектура
- •Расширенная гарвардская архитектура
- •Гибридные модификации с архитектурой фон Неймана
- •Модуль микропроцессора
Структура ЭВМ и принцип ее работы
Исторически компьютер появился как машина для вычислений и назывался электронной вычислительной машиной - ЭВМ. Структура такого устройства была описана знаменитым математиком Джоном фон Нейманом в 1945 г
Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов. /Информатика: Учебник. Под ред. Макаровой Н.В. М.: Финансы и статистика, 2000./
Структура современного персонального компьютера представлена на рисунке ниже. /Акулов О.А., Медведев Н.В. Информатика: базовый курс. М.: Омега-Л, 2006/
Рассмотрим принцип взаимодействия основных устройств.
Материнская (системная) плата -- важнейший элемент ПК, на ней размещаются устройства, непосредственно осуществляющие процесс обработки информации (вычислений), как правило, это микропроцессор, внутренняя память, системная шина, контроллер клавиатуры, генератор тактовой частоты, контроллер прерываний, таймер и др. Материнская плата
Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Материнская плата стандарта ATX (модель MSI K7T266 Pro2)
Компоненты материнской платы
Материнская плата (англ. motherboard, MB, также используется название англ. mainboard — главная плата; сленг. мама, мать, материнка, мамуля) — сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера либо сервера начального уровня (центральный процессор, контроллер оперативной памяти и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода). Именно материнская плата объединяет и координирует работу таких различных по своей сути и функциональности комплектующих, как процессор, оперативная память, платы расширения и всевозможные накопители.
Основные компоненты
Основные компоненты, устанавливаемые на материнской плате:
Основная статья: Центральный процессор
Центральный процессор (ЦПУ).
Основная статья: Чипсет
Набор системной логики (англ. chipset) — набор микросхем, обеспечивающих подключение ЦПУ к ОЗУ и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух СБИС: «северного» и «южного мостов».
Северный мост (англ. Northbridge), MCH (Memory controller hub), системный контроллер — обеспечивает подключение ЦПУ к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер.
Для подключения ЦПУ к системному контроллеру могут использоваться такие FSB-шины, как HyperTransport и SCI. Системная шина (FSB) – канал, по которому процессор соединен с другими устройствами компьютера.
К шине напрямую подключен только процессор, другие устройства компьютера подключены к ней через разнообразные контроллеры. Центральный процессор через Системную шину (FSB) подключается к системному контроллеру (Северный Мост или North Bridge). Северный мост оснащен контроллером ОЗУ (или же этот контроллер встроен в центральный процессор), а также контроллеры шин для подключения периферийных устройств.
Также
к системному контроллеру подключают
периферийные устройства с высокой
производительностью – видеокарта
с шиной PCI Express 16x, а устройства
с меньшой производительностью (устройства
с шиной PCI или микросхема BIOS) будут
подключены уже к Южному Мосту (South
Bridge), который, через специальную
шину, подключен к северному мосту. Набор
из северного и южного мостов называют
чипсетом.
Несложно сделать вывод, что чем выше частота шины, тем выше производительность, а значит, повышается скорость обмена данными между материнской платой и процессором. При выборе процессора и материнской платы следует обращать внимание на частоты их шин. Желательно чтобы они совпадали. Если частота шины процессора выше частоты материнской платы, то процессор работать не буду. Но если, к примеру, у процессора частота шины 1066 МГц, а материнская плата поддерживает процессоры с частотой 1333 МГц, то процессор будет работать, но только она своих 1066 МГц.
Обычно к системному контроллеру подключается ОЗУ. В таком случае он содержит в себе контроллер памяти. Таким образом, от типа применённого системного контроллера обычно зависит максимальный объём ОЗУ, а также пропускная способность шины памяти персонального компьютера. Но в настоящее время имеется тенденция встраивания контроллера ОЗУ непосредственно в ЦПУ (например, контроллер памяти встроен в процессор в AMD K8 и Intel Core i7), что упрощает функции системного контроллера и снижает тепловыделение.
В качестве шины для подключения графического контроллера на современных материнских платах используется PCI Express. PCI (англ. Peripheral component interconnect, дословно — взаимосвязь периферийных компонентов) — шина ввода/вывода для подключения периферийных устройств к материнской плате компьютера.
Стандарт на шину PCI определяет:
физические параметры (например, разъёмы и разводку сигнальных линий);
электрические параметры (например, напряжения);
логическую модель (например, типы циклов шины, адресацию на шине).
Развитием стандарта PCI
Ранее использовались общие шины (ISA, VLB, PCI) и шина AGP. AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) — разработанная в 1996 году компанией Intel, специализированная 32-битная системная шина для видеокарты. Появилась одновременно с чипсетами для процессора Intel Pentium MMX чипсет MVP3, MVP5 c Super Socket 7. Основной задачей разработчиков было увеличение производительности и уменьшение стоимости видеокарты, за счёт уменьшения количества встроенной видеопамяти. По замыслу Intel, большие объёмы видеопамяти для AGP-карт были бы не нужны, поскольку технология предусматривала высокоскоростной доступ к общей памяти. Её отличия от предшественницы, шины PCI:
работа на тактовой частоте 66 МГц;
увеличенная пропускная способность;
режим работы с памятью DMA и DME;
разделение запросов на операцию и передачу данных;
возможность использования видеокарт с большим энергопотреблением, нежели PCI.
Южный мост (англ. Southbridge), ICH (I/O controller hub), периферийный контроллер — содержит контроллеры периферийных устройств (жёсткого диска, Ethernet, аудио), контроллеры шин для подключения периферийных устройств (шины PCI, PCI Express и USB), а также контроллеры шин, к которым подключаются устройства, не требующие высокой пропускной способности (LPC — используется для подключения загрузочного ПЗУ; также шина LPC используется для подключения мультиконтроллера (англ. Super I/O) — микросхемы, обеспечивающей поддержку «устаревших» низкопроизводительных интерфейсов передачи данных: последовательного и параллельного интерфейсов, контроллера клавиатуры и мыши).
Как правило, северный и южный мосты реализуются в виде отдельных СБИС, однако существуют и одночиповые решения. Именно набор системной логики определяет все ключевые особенности материнской платы и то, какие устройства могут подключаться к ней.
Основная статья: Оперативная память
Оперативная память (также оперативное запоминающее устройство, ОЗУ). Каждая ячейка оперативной памяти имеет свой индивидуальный адрес. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. ОЗУ изготавливается как отдельный блок; также может входить в конструкцию однокристальной ЭВМ или микроконтроллера в виде оперативной памяти.
Основная статья: POST (аппаратное обеспечение)
Загрузочное ПЗУ. Хранит ПО, которое исполняется сразу после включения питания. Как правило, загрузочное ПЗУ содержит BIOS, однако может содержать и ПО, работающие в рамках EFI.
Конец формы