
- •Тема 4. Принятие решений в международных корпорациях.
- •2. Методы принятия решений.
- •3.1.3. Голосование - один из методов экспертных оценок
- •3.1.4. Простые методы принятия решений
- •3.1.5. Декомпозиция задач принятия решения
- •Прогнозирование дискретных столбцов
- •Прогнозирование непрерывных столбцов
- •3.1.6. Принятие решений в условиях инфляции
- •3.1.7. Современный этап развития теории принятия решений
- •Кооперативные и некооперативные
- •Симметричные и несимметричные
- •С нулевой суммой и с ненулевой суммой
- •Параллельные и последовательные
- •С полной или неполной информацией
- •Игры с бесконечным числом шагов
- •Дискретные и непрерывные игры
- •Метаигры
- •3. Рекомендации относительно ведения международных переговоров.
- •2) Сведения о переговорах с фирмой;
- •3) Сведения о деловых отношениях.
- •Сравнение подходов к проведению переговоров в сша со странами постсоветского пространства.
- •4. Влияние национальных культур на принятие управленческих решений. Особенности принятия управленческих решений в международных корпорациях, которые действуют в Украине (самостоятельно).
3.1.7. Современный этап развития теории принятия решений
Теория принятия решений – быстро развивающаяся наука. Задачи, которыми она занимается, порождены практикой управленческих решений на различных уровнях – от отдельного подразделения или малого предприятия до государств и международных организаций. Рассмотрим только несколько подходов, методов, проблем, активно обсуждающихся на современном этапе развития теории принятия решений. Это – системный подход, современные методы принятия решений, проблема горизонта планирования и контроллинг.
Системный подход при принятии решений. При обсуждении проблем принятия решений часто говорят о системном подходе, системе, системном анализе. Речь идет о том, что надо рассматривать проблему в целом, а не "выдергивать” для обсуждения какую-нибудь одну черту, хотя и важную. Так, при массовом жилищном строительстве можно "выдернуть" черту - стоимость квадратного метра в доме. Тогда наиболее дешевые дома - пятиэтажки. Если же взглянуть системно, учесть стоимость транспортных и инженерных коммуникаций (подводящих электроэнергию, воду, тепло и др.), то оптимальное решение уже другое – девятиэтажные дома.
Так, например, менеджер банка, отвечающий за распространение пластиковых карт, может сосредоточиться на рекламе. Между тем ему от системы "банк - владельцы карт" лучше перейти к системе "банк - руководители организаций - владельцы карт". Договоренность с руководителем учреждения, давшим в итоге приказ выплачивать заработную плату с помощью пластиковых карт, даст нашему менеджеру гораздо больший прирост численности владельцев карт, чем постоянная дорогая реклама. Его ошибка состояла в неправильном выделении системы, с которой он должен работать.
Менеджер банка будет не прав, оценивая работу подразделений банка в текущих рублях. Обязательно надо учитывать инфляцию. Иначе мы сталкиваемся с парадоксальными явлениями, когда реальная ставка платы за кредит отрицательна; или же - рублевый оборот растет, банк якобы процветает, а после перехода к сопоставимым ценам путем деления на индекс инфляции становится ясно, что дела банка плохи.
Обратим внимание на постоянный конфликт между интересами промышленного предприятия и банка. Банкир стремится возможно дороже продать свои услуги по безналичному денежному обороту. Например, берет 3% комиссионных с каждого перечисления. И десятки процентов годовых за кредиты. Менеджмент предприятия вынужден повышать цены. Результат очевиден – снижение конкурентоспособности. Научный подход к разрешению конфликта – теория игр.
Различных определений понятия «система» - десятки. Общим в них является то, что о системе говорят как о множестве, между элементами которого имеются связи. Целостность системы и ее "отделенность" от окружающего мира обеспечиваются тем, что взаимосвязи внутри системы существенно сильнее, чем связь какого-либо ее элемента с любым элементом, лежащим все системы. По определению действительного члена Российской академии наук Н.Н.Моисеева: "Системный анализ - это дисциплина, занимающаяся проблемами принятия решений в условиях, когда выбор альтернативы требует анализа сложной информации различной физической природы" [15].
Современные методы принятия решений. Кроме упомянутых или кратко рассмотренных выше методов, прежде всего экспертных, при принятии решений применяют весь арсенал методов современной прикладной математики. Они используются для оценки ситуации и прогнозирования при выборе целей, для генерирования множества возможных вариантов решений и выбора из них наилучшего.
Прежде всего надо назвать всевозможные методы оптимизации (математического программирования). Для борьбы с многокритериальностью используют различные методы свертки критериев, а также интерактивные компьютерные системы, позволяющие вырабатывать решение в процессе диалога человека и ЭВМ. Применяют имитационное моделирование, базирующееся на компьютерных системах, отвечающих на вопрос: “Что будет, если...?", метод статистических испытаний (Монте-Карло), модели надежности и массового обслуживания. Часто необходимы статистические (эконометрические) методы, в частности, методы выборочных обследований. При принятии решений применяют как вероятностно-статистические модели, так и методы анализа данных.
Особого внимания заслуживают проблемы неопределенности и риска, связанных как с природой, так и с поведением людей. Разработаны различные способы описания неопределенностей: вероятностные модели, теория нечеткости, интервальная математика. Для описания конфликтов (конкуренции) полезна теория игр. Для структуризации рисков используют деревья причин и последствий (диаграммы типа "рыбий скелет", они же – диаграммы Исикава или Ишикава, по фамилии японского исследователя, впервые их использовавшего). Менеджеру важно учитывать постоянные и аварийные экологические риски. Плата за риск и различные формы страхования также постоянно должны быть в его поле зрения.
Проблема горизонта планирования. Во многих ситуациях продолжительность проекта не определена либо горизонт планирования инвестора не охватывает всю продолжительность реализации проекта до этапа утилизации. В таких случаях необходимо изучить влияние горизонта планирования на принимаемые решения. Это особенно важно для стратегического менеджмента (глава 1.4)
Контроллинг. Как уже отмечалось, в последние годы все большую популярность получает контроллинг - современная концепция системного управления организацией, в основе которой лежит стремление обеспечить ее долгосрочное эффективное существование [11,12]. Контроллинг – это информационно-аналитическая поддержка принятия решений на предприятии (в организации). Контроллинг рассматривается в главе 3.6.
В конкретных прикладных работах успех достигается при комбинированном применении различных методов. Для подготовки решений создаются аналитические центры и "ситуационные комнаты", позволяющие соединять человеческую интуицию и компьютерные расчеты. Все шире используются информационные технологии поддержки принятия решений, прежде всего в контроллинге.
Метод деловых игр известен с 17-18 века и история его возникновения описана в литературе. Деловая игра этого времени определяется как “военная или предпринимательская”. Первое упоминание деловой игры значилось как “военные шахматы”, потом как “маневры на карте”. Интересно, что в 19 веке “военные игры должны были служить для того, чтобы разбудить внимание молодых военнослужащих и уменьшить трудности при обучении”. Один из прусских генералов применял игровой метод при обучении офицеров. Развитие предпринимательских игр продолжает традицию “плановых упражнений” военных. Члены американской Ассоциации Менеджмента после посещения Военно-морской академии обнаружили, что они как менеджеры сталкиваются с аналогичными ситуациями принятия решений. С тех пор деловые игры в США используются в различных областях знания.
Сами военные игры в качестве прототипа имели шахматы. В 1664 году была проведена так называемая королевская игра, отличающаяся от шахмат большой реалистичностью. В 1780 г. "военные шахматы" начали использоваться в подготовке офицеров. Доска у таких шахмат имела рельеф, на ней было больше клеток, король представлял крепость, ферзь - пехоту. Правила описывались математическими формулами. С 1798 г. игры проводились на карте, где фиксировались передвижение военных отрядов. Таким образом Наполеон проигрывал будущие сражения. Позже данные о продвижении войск Наполеона становились основой для формирования последующей игры. Игры становились более реалистичными и свободными. Перед второй мировой войной в Германии, США, Японии начали проводить военно-политические игры.
Позже стали разрабатываться игры, моделирующие перераспределение ресурсов в международных отношениях. Они были как бы возвращением к салонным играм и содержали такие компоненты, как пространство (ячейка, лунка, магазин, доска), игровые предметы, правила манипулирования и распространения информации, начальная позиция цель. По характеру они являлись чисто инструментальными. Но позже и они стали корректироваться с учетом человеческого фактора. Вводятся понятия "широта решений", зависящая от "силы власти", "удовлетворенности подданных". Для оценки последствий альтернативных решений в таких играх применяется математический аппарат теории игр.
Исходным моментом развития всех игр, которые можно рассматривать как модель сотрудничества и конфликта, является ролевая игра. Дальнейшее их развитие, возникновение спортивных, салонных игр связано с уменьшением драматического компонента, отражающего социальное взаимодействие. Начиная с военных игр значение этого компонента снова начинает возрастать. С дальнейшим усилением драматического компонента связано возникновение деловых игр, которые произошли из военных.
Впервые применение игр в хозяйственной сфере было осуществлено в СССР в 1932 году на Лиговском заводе пишущих машин для обучения персонала в условиях освоения новой продукции. Деловая игра, направленная на решение производственных проблем, была проведена в 1932 году Марией Мироновной Бирнштейн и называлась "Перестройка производства в связи с резким изменением производственной программы". Ее участниками стали студенты ВУЗов и руководители предприятий, играли в выходные дни на территории фабрики “Красный ткач”. Свободные высказывания участников, множество вариантов решения проблем, наработанные в ходе деловых игр, сделали этот вид деятельности опасным и не совместимым с режимом тотальной регламентации, и их судьба с 1938 г. замерла на десятилетия.
Первая машинная игра была создана в 1955 году в США. Она имитировала снабжение баз ВВС. В 1955 г. Американская ассоциация управления разработала игру "Имитация решений в высшем управленческом звене" и испытала ее на ежегодном семинаре в Саранак Лейк в 1957 г. Там впервые появился термин "деловая игра". Уже через 10 лет они применялись почти во всех школах бизнеса. Первые игры не отражали процесс принятия решения, основное внимание уделялось выбору из альтернатив. Большая часть из них - рыночные игры. Они, как правило, моделировали деятельность нескольких производящих какой-либо продукт и сбывающих его на рынке. Каждую компанию представляет команда игроков, которая принимает решения, по нескольким управляемым параметрам. Решения рассчитываются по некоторой математической модели, и игроки информируются о результатах своих действий. Затем широкое распространение получили внутрифирменные игры, включающие более выраженный драматический компонент. В них участники получали возможность развить управленческие навыки, обучиться принимать решения в сложных ситуациях с учетом многих факторов.
Что такое теория игр?
Теория игр представляет из себя сложное многоаспектное понятие, поэтому представляется невозможным привести толкование теории игр, используя лишь одно определение. Рассмотрим три подхода к определению теории игр.
1.Теория игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.
2.Теория игр - это раздел прикладной математики, точнее - исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение теория игр имеет для искусственного интеллекта и кибернетики.
3.Одна из важнейших переменных, от которой зависит успех организации - конкурентоспособность. Очевидно, способность прогнозировать действия конкурентов означает преимущество для любой организации. Теория игр - метод моделирования оценки воздействия принятого решения на конкурентов.
История теории игр
Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж.Бертраном. В начале XX в. Э.Ласкер, Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.
Математическая теория игр берёт своё начало из неоклассической экономики. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение».
Джон Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу», или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Нэша сделали серьезный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Джон Нэш показывает, что классический подход к конкуренции А.Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других. В 1949 году Джон Нэш пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике.
Хотя теория игр первоначально и рассматривала экономические модели вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.
В 1960 - 1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.
Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии и в управлении конфликтами в организации.
Основные положения теории игр
Ознакомимся с основными понятиями теории игр. Математическая модель конфликтной ситуации называется игрой, стороны, участвующие в конфликте - игроками . Чтобы описать игру, необходимо сначала выявить ее участников (игроков). Это условие легко выполнимо, когда речь идет об обычных играх типа шахмат и т.п. Иначе обстоит дело с "рыночными играми". Здесь не всегда просто распознать всех игроков, т.е. действующих или потенциальных конкурентов. Практика показывает, что не обязательно идентифицировать всех игроков, надо обнаружить наиболее важных. Игры охватывают, как правило, несколько периодов, в течение которых игроки предпринимают последовательные или одновременные действия. Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход - это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре). Случайный ход - это случайно выбранное действие (например, выбор карты из перетасованной колоды). Действия могут быть связаны с ценами, объемами продаж, затратами на научные исследования и разработки и т.д. Периоды, в течение которых игроки делают свои ходы, называются этапами игры. Выбранные на каждом этапе ходы в конечном счете определяют "платежи" (выигрыш или убыток) каждого игрока, которые могут выражаться в материальных ценностях или деньгах. Еще одним понятием данной теории является стратегия игрока. Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определённую стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Иначе говоря, под стратегией понимаются возможные действия, позволяющие игроку на каждом этапе игры выбирать из определенного количества альтернативных вариантов такой ход, который представляется ему "лучшим ответом" на действия других игроков. Относительно концепции стратегии следует заметить, что игрок определяет свои действия не только для этапов, которых фактически достигла конкретная игра, но и для всех ситуаций, включая и те, которые могут и не возникнуть в ходе данной игры. Игра называется парной, если в ней участвуют два игрока, и множественной, если число игроков больше двух. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая: 1) варианты действий игроков; 2) объём информации каждого игрока о поведении партнёров; 3) выигрыш, к которому приводит каждая совокупность действий. Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулём, выигрыш - единицей, а ничью - ½. Игра называется игрой с нулевой суммой, или антагонистической, если выигрыш одного из игроков равен проигрышу другого, т. е. для полного задания игры достаточно указать величину одного из них. Если обозначить а - выигрыш одного из игроков, b - выигрыш другого, то для игры с нулевой суммой b = -а, поэтому достаточно рассматривать, например а. Игра называется конечной, если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае. Для того чтобы решить игру, или найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии. Такие стратегии называются оптимальными. Оптимальные стратегии должны также удовлетворять условию устойчивости, т. е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре. Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной партии, а средний выигрыш (проигрыш) во всех партиях. Целью теории игр является определение оптимальной стратегии для каждого игрока. При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.
Типы игр