Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
math_13-18.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
963.07 Кб
Скачать
  1. Интегрирование по частям

Метод интегрирования по частям базируется на следующей теореме.

Теорема 2. Пусть функции u = u(x) и v = v(x) дифференцируемы на некотором интервале (a;b). Пусть на интервале (a;b) функция v(x)u'(x) имеет первообразную. Тогда на интервале (a;b) функция u(x)v'(x) также имеет первообразную. При этом справедливо равенство:

.

Доказательство. По формуле дифференцирования произведения:

(u(x)v(x))'= u '(x)v(x) + u(x)v '(x)

и свойству неопределённого интеграла:

можно записать:

Замечание 1. Определение дифференциала и свойства инвариантности его формы позволяют переписать формулу интегрирования по частям в более короткой форме:

.

Замечание 2. Для успешного вычисления интеграла необходимо разумно разбить подынтегральное выражение на два множителя u(x) и dv(x) так, чтобы интеграл оказался легко интегрируемым.

Практика показывает, что большая часть интегралов, берущихся с помощью метода интегрирования по частям, может быть разбита на следующие три группы.

1) К первой группе относятся интегралы, у которых подынтегральная функция содержит в качестве множителя одну из следующих функций:

ln x; arcsin x; arccos x; arctg x; arcctg x; ln2x; ln(x); arcsin2x;…

при условии, что оставшаяся часть подынтегральной функции представляет собой производную известной функции.

Тогда за функцию u(x) берут соответствующую из перечисленных.

2) Ко второй группе относятся интегралы вида:

, ,

, ,

где a,b,,n,Aнекоторые постоянные числа, A > 0, n N.

При этом в качестве u(x) следует брать (ax +b)n и интегрировать по частям n раз.

3) К третьей группе относятся интегралы вида:

, , ,

, , ,

где , , A – постоянные числа, A > 0, A ≠ 1.

Такие интегралы берутся двукратным интегрированием по частям при любом выборе u(x). Это приводит к линейному уравнению относительно предложенного интеграла, откуда его и находят.

Замечание. Указанные три группы не исчерпывают всех без исключения интегралов, берущихся методом интегрирования по частям.

Пример 14.

Ответ:

Пример 15.

Ответ:

Пример 16.

Ответ:

Пример 17.

Ответ:

Пример 18.

Далее необходимо решить уравнение:

Пусть , тогда уравнение запишется в виде:

.

Ответ: .

Пример 19.

.

Пусть , тогда получаем уравнение вида:

.

Ответ: .

  1. Интегрирование рациональных дробей Разложение рациональной дроби на сумму простых дробей

Определение 1. Рациональной дробью называется отношение двух многочленов:

Определение 2. Рациональная дробь называется правильной, если m < n. В противном случае (если m n) она называется неправильной.

Определение 3. Простыми рациональными дробями называются дроби следующих четырех типов:

I . ,

II. ,

III. ,

IV.

Теорема 3. Всякую неправильную рациональную дробь можно представить в виде суммы целой части (многочлена) и правильной рациональной дроби.

Пример 20. Представить дробь в виде суммы целой части и правильной рациональной дроби.

Так как высшая степень числителя равна 4, а знаменателя – 2, то данная дробь неправильная (4 > 2). Разделим числитель на знаменатель:

Следовательно, дробь можно записать в виде:

.

Ответ: .

Теорема 4. Любую правильную рациональную дробь можно единственным образом представить в виде суммы конечного числа простых рациональных дробей.

Разложение правильной рациональной дроби (m<n) на сумму простых дробей можно выполнить по следующей схеме:

  • Найти корни многочлена Qn(x) и представить его в виде произведения простых множителей:

,

где ,

,

,

,

  • Записать разложение дроби с неопределёнными коэффициентами:

  • Определить коэффициенты

суммарное число которых равно n, методом неопределенных коэффициентов.

Для этого необходимо всё разложение привести к общему знаменателю и приравнять числитель полученной дроби к Pm(x). Приравнивая в этих многочленах коэффициенты при одинаковых степенях x, получим систему из n линейных уравнений с n неизвестными. Эта система имеет единственное решение – искомые коэффициенты.

Пример 21. Разложить дробь на сумму простых дробей.

1) Данная дробь правильная. Разложим знаменатель на множители:

.

2) Запишем разложение данной дроби на сумму простых дробей:

3) Для нахождения коэффициентов A, B и C приводим разложение дроби к общему знаменателю и приравняем числители дробей.

Следовательно, дробь можно записать в виде:

.

Ответ: .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]