
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:ЕЛЕМЕНТИ ТЕОРІЇ ФУНКЦІЙ КОМПЛЕКСНОЇ ЗМІННОЇ_для...docx
X
- •Елементи теорії функцій комплексної змінної
- •1. Функції комплексної змінної.
- •1.1. Основні поняття
- •1.2 Границя і неперервність функції комплексної змінної
- •1.3. Основні елементарні функції комплексної змінної
- •1.3.1. Показникова функція
- •1.1.3.2. Логарифмічна функція
- •1.3.5. Тригонометричні функції
- •1.3.6. Гіперболічні функції
- •1.3.7. Обернені тригонометричні і гіперболічні функції
- •1.4. Диференціювання функції комплекснї змінної. Умови Ейлера-Даламбера.
- •1.5. Аналітична функція. Диференціал
- •2. Інтегрування функції комплексної змінної
- •2.1 Означення, властивості і правила обчислення інтеграла
- •2.2. Теорема Коші. Первісна , невизначений інтеграл. Формула Ньютона-Лейбніца.
- •2.3. Інтеграл Коші. Інтегральна формула Коші
- •3. Ряди в комплексній площині
- •3.1. Числові ряди
- •3.2. Степеневі ряди
- •3.3. Ряд Тейлора
- •3.4. Нулі аналітичної функції
- •3.5. Ряд Лорана
- •Ряд Лорана для функції
- •○ Скористаємося відомим розкладом
- •3.6. Класифікація особливих точок.
- •Усувні особливі точки
- •Істотно особлива точка
- •4. Лишок функції
- •4.1. Поняття лишка і основна теорема про лишки
- •4.2. Обчислення лишків. Застосування лишків в обчисленні інтегралів
- •4.3.Теорема Коші про лишки
- •Доведення
Доведення
Нехай F —
множина особливих точок функції f,
і для
,
функція допускає розклад у ряд
Лорана в
деякому проколотому диску
радіуса
з
центром у точці
:
Нехай
ряд,
визначений із сингулярної частини ряду
Лорана :
Він є нормально
збіжним на компактних
підмножинах
.
Визначимо функцію g у всій множині U як:
Дана функція є голоморфною в усій області U і тому згідно з інтегральною теоремою Коші:
згідно з визначенням функції g :
Зважаючи на
нормальну збіжність
можна
записати :
Обчислюючи інтеграли одержуємо :
Об'єднавши дві попередні формули можна одержати:
І, згадавши визначення лишка, одержуємо необхідний результат:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]