- •Физические основы механики
- •Элементы кинематики
- •Следствия из преобразований Лоренца:
- •Элементы релятивисткой динамики
- •Механика колебаний и волн. Кинематика гармонических колебаний
- •Гармонический осциллятор
- •Логарифмический декремент затухания.
- •Волновые процессы
- •Основы термодинамики
- •Явление переноса
- •Эффективное сечение. Длина свободного пробега.
- •1) Теплопроводность (перенос энергии) ; 2) диффузия (перенос массы) ; 3) внутренние трение или вязкость (перенос импульса) ;
- •Статистические распределения
- •Макроскопические состояния
- •Макроскопические состояния.
- •Давление газа с точки зрения молекулярно-кинетической теории.
- •Молекулярно-кинетический взрыв температуры.
- •Фазовые равновесия и фазовые превращения
Давление газа с точки зрения молекулярно-кинетической теории.
При своем движении молекулы газа ударяются о стенки сосуда, в котором находится газ, создавая тем самым давление газа на стенки. Если газ находится в равновесии, то все направляющие движения молекул равновероятны.
Пусть в единице объема содержится n0 молекул. При абсолютно упругом ударе молекулы об стенку ее импульс изменяется на 2m0v. Ясно, что за время t до стенки долетят и упруго отразятся от нее все молекулы, находящиеся внутри параллелепипеда с основанием S и высотой vt.
Таких молекул будет: n = (1/6) n0 S v t ; следовательно общее изменение импульса молекул, долетевших за время t до стенки и упруго-отразившихся от нее будет: 2m0 v n = (1/3) n0 m0 v (ст.2) S t ; Это изменение импульса равно импульсу силы, действующей со стороны стенки на молекулы, а следовательно, согласно третьему закону Ньютона со стороны молекул на стенки: (1/3) n0 m0 v (ст.2) S t = F t ; F = (1/3) m0 v (ст.2) n0 S ; P = (1/3) n0 m0 v (ст.2) – основное уравнение.
Молекулярно-кинетический взрыв температуры.
n0 k T = (1/3) n0 v (ст.2) ; (3/2) k T = m0 v (ст.2) / 2 ; <E> = m0 v (ст.2) / 2 = (3/2) k T – кинетическая энергия молекул.
v = (корень) 3kT / m0 = (корень) 3RT / μ – средняя квадратичная скорость молекул ; Для материальн ой точки, каковой является молекула идеального газа, есть 3 степени свободы – x, y, z. Т.к. средняя кинетическая энергия молекул идеального газа равна (3/2)kT, то можно утверждать, что на одну степень свободы приходится энергия, равная (1/2)kT. Этот вывод совпадает с выводом общей теоремы о равновероятном распределении энергии по степеням свободы, которая утверждает, что в состоянии термодинамического равновесия на каждую степень свободы приходится энергия равная (1/2)kT, откуда в общем случае средняя энергия молекул определяется выражением (i/ 2)kT, где i – число степеней свободы.
Система из N точек имеет 3N степени свободы (в том случае, если между точками нет жесткой связи; каждая жесткая связь уменьшает число степеней свободы на единицу). В общем случае i = i пост + i вращ + 2i колеб
Закон о равновесном распределении энергии по степеням свободы получен на основании классических представлений о характере движения молекул. Он нарушается в тех случаях, когда становится существенным квантовый эффект.
Фазовые равновесия и фазовые превращения
Фазой — называется термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества.
Фазовый переход — переход вещества из одной фазы в другую. Всегда связан с качественными изменениями свойств вещества. Примером фазового перехода могут служить изменения агрегатного состояния вещества или переходы, связанные с изменениями в составе, строении и свойствах вещества (например, переход кристаллического вещества из одной модификации в другую).
Для наглядного изображения фазовых превращений используется диаграмма состояния, на которой в координатах р, Т задается зависимость между температурой фазового перехода и давлением в виде кривых испарения (КИ), плавления (КП) и сублимации (КС), разделяющих поле диаграммы на три области, соответствующие условиям существования твердой (ТТ), жидкой (Ж) и газообразной (Г) фаз. Кривые на диаграмме называются кривыми фазового равновесия, каждая точка на них соответствует условиям равновесия двух сосуществующих фаз: КП — твердого тела и жидкости, КИ — жидкости и газа, КС — твердого тела и газа.
Тройная точка - точка, в которой пересекаются эти кривые и которая, следовательно, определяет условия (температуру Tтр и соответствующее ей равновесное давление ртр) одновременного равновесного сосуществования трех фаз вещества.
Реальный газ - газ, свойства которого зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия
Уравнение Ван-дер-Ваальса. Для реальных газов необходимо учитывать размеры молекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона—Менделеева (42.4) pVm=RT (для моля газа), описывающее идеальный газ, для реальных газов непригодны. Ван-дер-Ваальсом в уравнение Клапейрона—Менделеева введены две поправки.
1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не Vm, a Vm -b, где b — объем, занимаемый самими молекулами. Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d, т. е. объем, равный восьми объемам молекулы, а в расчете на одну молекулу — учетверенный объем молекулы.
2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е. p' = a/V2m, где а— постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm — молярный объем.
Вводя эти поправки, получим уравнение Ван-дер-Ваальса (уравнение состояния реальных газов): (p+av(ст2)/V2m)(Vm-vb)=vRT.
Фазовыми переходами II рода - фазовые переходы, не связанные с поглощением или выделением теплоты и изменением объема. Эти переходы характеризуются постоянством объема и энтропии, но скачкообразным изменением теплоемкости. Согласно этой трактовке, фазовые переходы II рода связаны с изменением симметрии: выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода. Примерами фазовых переходов II рода являются: переход ферромагнитных веществ (железа, никеля) при определенных давлении и температуре в парамагнитное состояние; переход металлов и некоторых сплавов при температуре, близкой к 0 К, в сверхпроводящее состояние, характеризуемое