- •Электотехника Электрические цепи переменного тока Трехфазные цепи
- •Электотехника Электрические цепи переменного тока Трехфазные цепи
- •Уравнения Максвелла
- •[Править]История
- •[Править]Запись уравнений Максвелла и системы единиц
- •[Править]Дифференциальная форма
- •[Править]Интегральная форма
- •[Править]Сила Лоренца
- •[Править]Размерные константы в уравнениях Максвелла
- •[Править]Уравнения Максвелла в среде
- •[Править]Связанные заряды и токи
- •[Править]Материальные уравнения
- •[Править]Уравнения в изотропных и однородных средах без дисперсии
- •[Править]Граничные условия
- •[Править]Законы сохранения
- •[Править]Уравнение непрерывности
- •[Править]Закон сохранения энергии
- •[Править]Потенциалы [править]Скалярный и векторный потенциалы
- •[Править]Векторы Герца
- •[Править]Потенциалы Дебая
- •[Править]Векторы Римана — Зильберштейна
- •[Править]Ковариантная формулировка
- •[Править]Четырёхмерные векторы
- •[Править]Тензор электромагнитного поля
- •[Править]Лагранжиан
- •[Править]Запись при помощи дифференциальных форм
- •[Править]Общековариантная запись в компонентах
- •[Править]Спектральное представление
- •[Править]Уравнения без свободных зарядов и токов
- •[Править]Волновое уравнение
- •[Править]Уравнение Гельмгольца
- •[Править]Некоторые точные решения [править]Поле движущегося точечного заряда
- •[Править]Плоские электромагнитные волны
- •[Править]Связь с другими теориями
- •[Править]Аксиоматический подход
- •[Править]Единственность решений уравнений Максвелла
- •[Править]Численное решение уравнений Максвелла
- •[Править]Источники
- •[Править]История развития
- •[Править]Общие курсы физики
- •[Править]Курсы теоретической физики
- •[Править]Решения уравнений Максвелла
- •[Править]Ссылки
- •25.1. Уравнения линии с распределенными параметрами, их решение в синусоидальном режиме
[Править]Потенциалы [править]Скалярный и векторный потенциалы
Закон Фарадея и закон Гаусса для магнитной индукции выполняются тождественно, если электрическое и магнитное поля выразить через скалярный и векторный потенциалы[39]:
СГС |
СИ |
|
|
Доказательство [показать]
При данных электрическом и магнитном полях, скалярный и векторный потенциалы определены неоднозначно. Если — произвольная функция координат и времени, то следующее преобразование не изменит значение полей:
СГС |
СИ |
|
|
Подобные преобразования играют важную роль в квантовой электродинамике и лежат в основе локальной калибровочной симметрии электромагнитного взаимодействия. Локальная калибровочная симметрия вводит зависимость от координат и времени в фазу глобальной калибровочной симметрии, которая, в силу теоремы Нётер, приводит к закону сохранения заряда.
Неоднозначность определения потенциалов оказывается удобной для наложения на них дополнительных условий, называемых калибровкой. Благодаря этому, уравнения электродинамики принимают более простой вид. Рассмотрим, например, уравнения Максвелла в однородных и изотропных средах с диэлектрической (ε) и магнитной ( ) проницаемостями. Для данных и всегда можно подобрать такую функцию f, чтобы выполнялось калибровочное условие Лоренца[40]:
СГС |
СИ |
|
|
В этом случае оставшиеся уравнения Максвелла в однородных и изотропных средах могут быть записаны в следующем виде:
СГС |
СИ |
|
|
где — оператор Д’Аламбера, который и в системе СГС, и в системе СИ имеет вид:
Таким образом, 8 уравнений Максвелла для компонент электромагнитного поля (2 векторных и 2 скалярных) при помощи потенциалов могут быть сведены к 4 уравнениям (скалярному для и векторному для ). Решения этих уравнений для произвольно двигающегося точечного заряда называются потенциалами Лиенара — Вихерта[41].
Возможно введение других калибровок. Так, для решения ряда задач удобной оказываетсякулоновская калибровка:
В этом случае:
СГС |
СИ |
|
|
,
где — соленоидальная часть тока ( ).
Первое уравнение описывает мгновенное (без запаздывания) действие кулоновской силы, поскольку кулоновская калибровка неинвариантна относительно преобразований Лоренца. При этом энергию кулоновского взаимодействия можно отделить от остальных взаимодействий, что облегчает квантование поля в гамильтоновом формализме[42].
Векторный потенциал играет большую роль в электродинамике и в квантовой теории поля, однако для исследования процессов распространения электромагнитных волн в отсутствие токов и зарядов его введение часто не приводит к упрощению системы, а сводится к простой замене векторов электрического и магнитного поля на другой аналогичный вектор, описываемый теми же уравнениями. Так, для гармонических полей векторный потенциал будет просто пропорционален электрическому полю (скалярный потенциал при этом можно положить равным нулю).