- •Задание на контрольную работу и Общие указания к выполнению контрольной работы
- •Варианты контрольного задания
- •Химическая термодинамика Энергетика химических процессов
- •Термохимические законы
- •Контрольные вопросы.
- •Химическая кинетика
- •Контрольные вопросы.
- •Химическое равновесие
- •Контрольные вопросы.
- •Растворы. Гидролиз солей. Жесткость воды.
- •Контрольные вопросы.
- •Термодинамика электрохимических процессов
- •Контрольные вопросы
- •Электролиз
- •Контрольные вопросы.
- •Коррозия и защита металлов
- •Химическая коррозия
- •Контрольные вопросы
- •Учебно-профессиональные задачи курса
- •Задачи для самоконтроля
- •Приложение
- •Энергия ( потенциал ) ионизации и электроотрицательность атомов элементов
- •Стандартные теплоты ( энтальпия ) образования н0298; энтропии s0298 и энергии Гиббса образования g0298 некоторых веществ
- •Стандартные электродные потенциалы ( 0 ) некоторых металлов ( ряд напряжений ) при 298к.
Растворы. Гидролиз солей. Жесткость воды.
Истинные растворы, которые Вам предстоит изучить, принадлежат к высокодисперсным системам. Кроме них существуют низкодисперсные системы типа суспензий и эмульсий и коллоидные системы (золи), занимающие промежуточное положение между ними по степени дисперсности.
Благодаря своим особым свойствам и характеристикам (адсорбция, поверхностное натяжение, коагуляция и др) дисперсные системы представляют большой практический интерес.
Обращение к изучению истинных растворов связано прежде всего с тем, что физико-химические свойства веществ зависят не только от их структуры, термодинамических и кинетических условий, но и характера среды реакции - неэлектролитов и электролитов. Тип раствора и является предмет изучения данной темы.
Физико-химическая природа процесса растворения (ключевое понятие) включает в себя как диффузию (физическая часть), так и сольватацию (химическая часть), последняя преобладает в электролитах.
Диффузия лежит в основе фазового перехода, характеризуемого величинами ∆Hф.п. и ∆Sф.п. (в случае электролита добавляется еще ∆Hсольв. и ∆Sсольв.). Именно от их сочетания
(∆G=∆H-T∆S) зависит растворимость веществ. Законы же Рауля объясняют такие физические свойства веществ в растворах, как повышение температуры кипения (∆tкип) и понижение температуры замерзания (∆tзам) по сравнению с чистыми веществами.
В свою очередь
сольватация (гидратация) является
причиной процесса электролитической
диссоциации
веществ, характеризуемого величиной
константы
диссоциации
(Кд).
Применительно к диссоциации воды Кд
превращается в ионное произведение
воды (
)
и затем в pH
(водородный показатель).
Таким образом, в растворе вода может быть или просто реакционной средой, или реагентом. В первом случае она изменяет в основном физические свойства веществ (агрегатное состояние, растворимость, tкип, tзам). Во втором - физико-химические свойства (реакционная способность, кислотные, основные, окислительно-восстановительные, электрические).
Применяя рассматриваемые выше общие закономерности протекания химических реакций, следует учитывать роль среды как дополнительного фактора, влияющего на ход процесса.
В этой связи давайте обратимся к растворам и, прежде всего, водным, так как вода является наиболее распространенным компонентом растворов и обладает поистине уникальными свойствами.
Нельзя не заметить, что подавляющее большинство легко доступных материалов являются растворами или гетерогенными смесями, а не чистыми веществами или соединениями. Так, например, чистый атмосферный воздух - раствор, в котором кислород составляет около 1/5 части.
Повсеместность распространения растворов обусловлена самопроизвольным протеканием процессов растворения (∆G < 0) за счет увеличения энтропии в результате смешивания частиц. Изучая растворы, следует помнить о физико-химической природе происхождения растворов, знать основные признаки истинных растворов.
Изучая термодинамику процесса растворения, необходимо учитывать как его физическую сторону (фазовый переход, диффузия), так и химическую (сольватация). При этом следует помнить, что сольватация (гидратация) всегда является экзотермическим процессом (∆Hсольв.<0) и сопровождается уменьшением энтропии (∆Sсольв.<0).
Известно, что существуют растворы неэлектролитов и электролитов. Изучая неэлектролиты, следует знать основные свойства их разбавленных растворов такие, как давление насыщенного пара, температуры кипения и замерзания (законы Рауля)
При изучении электролитов, следует обратить внимание на их важнейшую характеристику - силу электролита, оцениваемую величинами степени диссоциации () и константы диссоциации (Кд)1. При этом необходимо иметь в виду, что сильные электролиты диссоциируют практически нацело ( G<<0, Кд≥1), а слабые – незначительно ( G>0, Кд<1), причем ступенчато (Кд1>Кд2>Кд3)2. Следствием этого является тот важный факт, что реакции в растворах протекают между ионами. Известно, что сильные электролиты существуют преимущественно в виде ионов, а слабые - в виде недиссоциированных молекул.
Изучая слабые электролиты, не забывайте и об амфотерных - диссоциирующих двояко (по кислотному и основному типу). Это имеет большое практическое значение (например, алюминиевые конструкции устойчивы только в нейтральной среде).
Ярким примером такого амфотерного электролита является и вода, диссоциация которой количественно характеризуется постоянной величиной ионного произведения воды3
(К
=10-14).
Эта константа дает возможность определить
среду раствора (нейтральную, кислую,
щелочную) через величину водородного
показателя
pH4.
Эта величина приобретает особое значение при изучении явления гидролиза5 как особого типа ионообменных реакций в растворах3
Глубина протекания данного процесса количественно оценивается величиной константы гидролиза Кг.
Вода играет столь большую роль в природе, технике и технологических процессах, что изучение ее свойств и поведения является совершенно необходимым для будущего инженера. Достаточно вспомнить, что почти ¾ поверхности земного шара покрыты водой, образующей океаны, моря, реки и озера. Много воды находится в газообразном состоянии в виде паров в атмосфере, а также в виде огромных масс снега и льда.
Широкое распространение воды и ее значение объясняется особыми свойствами, резко отличающими воду от других веществ.
Известно, что вода является хорошим растворителем вследствие высокой полярности ее молекул (µ=1,84Д). Самопроизвольно протекающие реакции гидратации (∆Нгидр<0,∆Gp<0) служат тому доказательством
А в реакциях гидролиза солей вода является основным сореагентом
Вода обладает также каталитической способностью. Только в присутствии воды протекают процессы электролитической диссоциации (ионные реакции идут только в растворах). В отсутствии следов влаги не протекают многие химические реакции, например, фтороводород HF не разъедает стекло, натрий не окисляется в атмосфере воздуха и т.п.
В
есь
этот комплекс физических и химических
свойств воды обуславливает ее огромную
роль и в природе, и в технике. Использование
воды в технике многосторонне. Вода
используется не только как реагент или
катализатор некоторых производств, но
и как рабочая
среда -
ведь без снабжения водой не может
работать ни одна отрасль народного
хозяйства.
1Кд есть величина Кр для процесса диссоциации слабых электролитов, так как этот процесс обратим (к нему применим принцип Ле-Шателье).
2Чем больше Кд, тем больше ионов в растворе слабого электролита.
3Зависит только от температуры и не зависит от состава раствора.
4pH = - lg[H+] вводится из-за удобства пользования логарифмической шкалой.
5Гидролиз соли - процесс обменного взаимодействия ее с молекулами воды, сопровождающийся изменением pH раствора. Не забывайте, что в холодных и умеренно концентрированных растворах гидролиз практически ограничивается первой стадией.
Рассматривая роль воды в технике, имейте в виду, что природная вода не бывает совершенно чистой, а всегда содержит некоторое количество растворенных и взвешенных веществ органического и минерального происхождения. Вода, содержащая значительное количество солей кальция и магния, называется жесткой, в отличие от мягкой воды, например, дождевой. Суммарное содержание этих солей в воде называется ее общей жесткостью, которая подразделяется на карбонатную (временную) и некарбонатную (постоянную). Первая из них обусловлена присутствием гидрокарбонатов кальция, магния, вторая - присутствием солей сильных кислот - сульфатов, хлоридов кальция и магния.
Присутствие в воде значительного количества солей кальция и магния делает воду непригодной для многих технических целей, в частности, для охлаждения. А при продолжительном питании паровых котлов жесткой водой их стенки постепенно покрываются плотным слоем накипи. Такой слой даже при толщине 1 см сильно понижает передачу теплоты стенками котла, что ведет к увеличению расхода топлива. Все это требует очистки воды от примесей. В частности, удаление солей кальция и магния, т.е. умягчение воды входит в систему водоподготовки - обработки природной воды.
В ходе водоподготовки воду освобождают от грубодисперсных и коллоидных примесей и от растворенных веществ.
Кроме указанных на схеме методов (кипячение, обработка Na2CO3, NaOH, Na3PO4 и др.) для умягчения воды применяют методы осаждения и ионного обмена - катионирования, а для биологической очистки используется озонирование. Применение ионного обмена исключительно многообразно. С помощью ионитов можно извлечь из производственных растворов многие металлы и их соли, уходившие ранее вместе со сточными водами безвозвратно (Ag, Au, Pt, Ni, Zn, Mo и др).
Для очистки естественных и сточных вод в настоящее время широко используется также явление взаимной коагуляции коллоидов. Коагуляция коллоидов коллоидами играет большую роль и в почвенных процессах.
С очисткой воды тесно связаны вопросы создания безотходных производств, составляющих одно из важных звеньев общей экологической проблемы. Со всем этим непременно должен быть знаком квалифицированный инженер.
Пример 1. Составьте ионно-молекулярные и молекулярные уравнения гидролиза солей: a) KCN, б) Nа2СО3, в) ZnSО4. Определите реакцию среды растворов этих солей.
Решение: а) Цианид калия KCN - соль слабой одноосновной кислоты HCN и сильного основания КОН. При растворении в воде молекулы KCN полностью диссоциируют на катионы К+ и анионы CN-. Катионы К+ не могут связывать ионы ОН- воды, так как КОН — сильный электролит. Анионы CN- связывают ионы Н+ воды, образуя молекулы слабого электролита HCN. Соль гидролизуется, как говорят, по аниону. Ионно-молекулярное уравнение гидролиза:
CN- + Н2О HCN + ОН-,
или в молекулярной форме:
KCN + H2O HCN + KOH
В результате гидролиза в растворе появляется некоторый избыток ионов ОН-, поэтому раствор KCN имеет щелочную реакцию (pH>7).
б) Карбонат натрия Na2CО3 - соль слабой многоосновной кислоты и сильного основания. В этом случае анионы СО32-, связывая водородные ионы воды, образуют анионы кислой соли НСО3- , а не молекулы Н2СО3, так как ионы НСО3- диссоциируют гораздо труднее, чем молекулы Н2СО3. В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза
СО32- + Н2О НСО3- + ОН-,
или в молекулярной форме
Na2CО3 + H2O NaHCO3 + NaOH
В растворе появляется избыток ионов ОН-, поэтому раствор Na2CO3 имеет щелочную реакцию (рН> 7).
в) Сульфат цинка ZnSО4 - соль слабого многоосновного основания Zn(OH)2 и сильной кислоты H2SO4. В этом случае Zn2+ связывают гидроксидные ионы воды, образуя катионы основной соли ZnOH+. Образование молекул Zn(OH)2 не происходит, так как ионы ZnOН+ диссоциируют гораздо труднее, чем молекулы Zn(OH)2. В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза
Zn2+ + H2O ZnOH+ + Н+,
или в молекулярной форме
2ZnSО4 + 2H2O (ZnOH)2SО4 + H2SО4.
В растворе появляется избыток ионов водорода, поэтому раствор ZnSО4 имеет кислотную реакцию (рН<7).
Пример 2. Давление насыщенного пара водного раствора, содержащего нелетучее растворенное вещество, на 2% ниже давления пара чистой воды. Определите моляльность раствора.
Решение. Зависимость давления насыщенного пара над раствором твердых веществ в жидких растворителях от концентрации выражается законом Рауля:
где
- давление пара над чистым растворителем;
Рi
– давление пара над раствором данной
концентрации;
- относительное понижение давления
насыщенного пара; n2
– число молей растворенного вещества;
n1
– число молей растворителя; х2
– мольная доля растворенного вещества.
Приняв за 100 давление пара чистого растворителя и подставив 98 вместо Рi, получим х2=0,02.
Моляльность раствора m – это количество растворенного вещества (моль) на 1 кг растворителя: х2=n2/(n1+n2),
где n1 – число молей воды в 1 кг: n1=1000/18=55,56, n2=m. После подстановки значений получаем 0,02=m/(55,56+m), откуда m=1,134.
Пример 3. Рассчитайте общую жесткость воды (в мг-экв/л), если в 0,25 л воды содержится 16,20 мг гидрокарбоната кальция, 2,92 мг гидрокарбоната магния, 11,10 мг хлорида кальция и 9,50 мг хлорида магния.
Решение. Жесткость воды Ж выражается в миллиграмм-эквивалентах двухзарядных катионов металлов Ca2+, Mg2+, Fe2+ и других или соответствующих им солей, содержащихся в 1 л воды:
Ж = m1/(Э1V) + m2/(Э2V) + m3/(Э3V) + … ,
где m1, m2, m3 – содержание в воде двухзарядных катионов металлов (или соответствующих им солей), мг; Э1, Э2, Э3 – эквиваленты катионов металлов (или соответствующих им солей); V – объем воды, л.
Определяем эквивалентные массы солей, обусловливающих жесткость воды:
для Са(НСО3)2 Э = М/2 = 162,11/2 = 81,05 г/моль;
для Mg(HCO3)2 Э = М/2 = 146,34/2 = 73,17 г/моль;
для CaCl2 Э = М/2 = 110,99/2 = 55,49 г/моль;
для MgCl2 Э = М/2 = 95,21/2 = 47,60 г/моль.
Общая жесткость данного образца воды равна сумме временной и постоянной жесткости и обусловливается содержанием в ней солей, придающих ей жесткость; она равна:
Жобщ = 16,20/(81,050,25) + 2,92/(73,170,25) + 11,10/(55,490,25) + 9,50/(47,600,25) = 0,80 + 0,16 + 0,80 + 0,80 = 2,56 мг-экв/л.
Пример 4. Какое количество извести необходимо для умягчения 1м3 воды, если временную жесткость воды нужно понизить с 6 до 2 мг·экв/л.
Решение. При
решении задачи используем закон
эквивалентов. Если жесткость воды нужно
понизить на 4 мг·экв/л, то извести нужно
добавить 4 мг·экв/л (
=74/2=37).
Для 1м3
воды (1000л) нужно следующее количество
извести: 4·37·1000=148000 мг = 148 г.
