Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
решить ЕГЭ.docx
Скачиваний:
70
Добавлен:
25.11.2019
Размер:
2.01 Mб
Скачать

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

S = p r,

где p = (a+b+c) — полупериметр,

r — радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части С:

где a, b, c — стороны треугольника, R — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

1. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен а. Тогда гипотенуза равна а .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

Ответ: 4.

2. Сторона AB тупоугольного треугольника ABC равна радиусу описанной около него окружности. Найдите угол C. Ответ дайте в градусах.

По теореме синусов,

Получаем, что sin C = . Угол С — тупой. Значит, он равен 150°.

Ответ: 150.

3. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

S = ah, где h — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону АВ пополам. По теореме Пифагора найдем h = 32. Тогда R = 25.

В Банке заданий ФИПИ (сайт mathege.ru) совсем немного задач, в которых участвуют вписанные и описанные треугольники. Но эти задачи необходимы тем, кто нацелен на решения задания С4.

Вписанные и описанные четырехугольники

Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности. Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке — вписанные и описанные четырехугольники и их свойства.

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

1. Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.

Сумма противоположных углов вписанного четырехугольника равна 180°. Пусть угол А равен 82°. Тогда напротив него лежит угол в 98 градусов. Если угол В равен 58°, то угол D равен 180° - 58° = 122°.

Ответ: 122.

2. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как 1:2:3. Найдите большую сторону этого четырехугольника, если известно, что его периметр равен 32.

Пусть сторона АВ равна х, AD равна 2х, а DС — 3х. По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит, х + 3х = ВС + 2х. Получается, что ВС равна 2х. Тогда периметр четырехугольника равен 8х. Мы получаем, что х = 4, а большая сторона равна 12.

Ответ: 12.

3. Около окружности описана трапеция, периметр которой равен 40. Найдите ее среднюю линию.

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны a и c, а боковые стороны — b и d. По свойству описанного четырехугольника, a + c = b + d, и значит, периметр равен 2(a + c). Получаем, что а + с = 20, а средняя линия равна 10.

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны 180°.

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

Докажите эти утверждения. Это задание особенно полезно тем, кто нацелен на решение части С.

Правильный треугольник. Площадь правильного треугольника

Правильный треугольник — треугольник, у которого все стороны равны. Каждый угол правильного треугольника равен 60 градусов. Правильный треугольник называют еще равносторонним.

Каждая из высот правильного треугольника является также его медианой и биссектрисой. Центры вписанной и описанной окружностей правильного треугольника совпадают.

Пусть сторона правильного треугольника равна а.

Высота правильного треугольника: Радиус окружности, вписанной в правильный треугольник: . Радиус описанной окружности в два раза больше: . Площадь правильного треугольника: .

Все эти формулы легко доказать. Если вы нацелены на решение задач части С — докажите их самостоятельно.

1. Сторона правильного треугольника равна . Найдите радиус окружности, вписанной в этот треугольник.

Задача решается в одну строчку. Радиус вписанной окружности .

2. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 6.

Сравним формулы для высоты правильного треугольника и радиуса вписанной окружности. Очевидно, радиус вписанной окружности равен высоты.

Ответ: 2.

3. Сторона правильного треугольника равна . Найдите радиус окружности, описанной около этого треугольника.

Радиус окружности, описанной вокруг правильного треугольника, равен .

Ответ: 1.

Правильный шестиугольник

Знаете ли вы, как выглядит правильный шестиугольник? Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.

Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.

Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.

Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?

Проведем диагонали правильного шестиугольника. Мы получили шесть равносторонних треугольников.

Мы знаем, что площадь правильного треугольника: .

Тогда площадь правильного шестиугольника — в шесть раз больше.

, где а — сторона правильного шестиугольника.

Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольник.

Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне. Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти. Он равен . Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.

1. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной .

Радиус такой окружности равен .

Ответ: 1,5.

2. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?

Мы знаем, что сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.

Ответ: 6.