
- •Глава I. Механика 7
- •Глава II. Общая и медицинская электроника 14
- •Глава III. Оптика 67
- •Глава IV. Физика атомов и молекул 124
- •Глава V. Ионизирующие излучения 142
- •Предисловие
- •Методические указания
- •Глава I. Механика Лабораторная работа № 10 определение моментов инерции с помощью крутильного маятника
- •Теоретическая часть Момент инерции
- •Теория подобия
- •Экспериментальная часть Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Глава II. Общая и медицинская электроника
- •Теоретическая часть Полупроводники
- •Полупроводниковый диод (p-n переход)
- •Физические основы работы транзистора
- •Характеристики транзистора
- •Устройство и применение транзистора
- •Практическая часть Описание установки
- •При выполнении работы необходимо соблюдать следующие правила:
- •Включать и выключать напряжение на коллекторе uэк можно только при наличии напряжения на базе uэб.
- •Напряжение на базе uэб не должно превышать 2 в.
- •Напряжение на коллекторе uэк не должно превышать 12 в.
- •Определение цены деления измерительных приборов
- •Порядок выполнения работы
- •Контрольные вопросы
- •Теоретическая часть Термометрия
- •Зависимость сопротивления металлов и полупроводников от температуры
- •Термометры сопротивления. Терморезисторы (термисторы)
- •Контактная разность потенциалов. Термоэдс
- •Термопара
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Рекомендуемая и использованная литература
- •Дополнительная литература
- •Лабораторная работа № 13 принцип работы генератора электромагнитных колебаний. Лечебное применение переменного электрического тока
- •Теоретическая часть Введение
- •Колебательный контур. Формула Томсона
- •Получение незатухающих колебаний в контуре
- •Принцип работы генератора электромагнитных колебаний на транзисторе
- •Амплитудно-модулированные синусоидальные сигналы
- •Лечебное применение переменного электрического тока Методы лечебного применения импульсного и переменного электрического тока
- •Физические процессы в тканях при воздействии переменным и импульсным электрическим током
- •Пороговые значения переменного тока
- •Низкочастотная электротерапия
- •Первичные механизмы действия переменных электрических токов в физиотерапевтических процедурах
- •Назначение и блок-схема аппарата «Амплипульс-5»
- •Практическая часть Описание установки. Вывод расчетных формул
- •Порядок выполнения работы
- •Часть I Определение индуктивности катушки и емкости конденсатора с помощью генератора электромагнитных колебаний
- •Часть II Изучение режимов работы аппарата для низкочастотной терапии «Амплипульс-5».
- •Контрольные вопросы
- •Использованная и рекомендуемая литература
- •Дополнительная литература
- •Глава III. Оптика Лабораторная работа № 14 полупроводниковый фотоэлемент и его применение для измерения освещенности
- •Теоретическая часть Фотоэффект и его применение.
- •Фотометрические величины и единицы. Принцип действия люксметра
- •Практическая часть Градуировка микроамперметра
- •Измерение освещенности с помощью полупроводникового фотоэлемента.
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа № 15
- •На этих свойствах основано применение лазеров. Применение лазеров в медицине
- •Дифракция света на щели
- •Дифракционная решетка
- •Практическая часть Определение длины волны лазерного излучения
- •Определение постоянной дифракционной решетки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая и рекомендуемая литература
- •Дополнительная литература
- •Лабораторная работа № 16 свойства поляризованного света. Использование поляризованного света в медицине
- •Теоретическая часть Естественный и поляризованный свет. Закон Малюса
- •Применение поляризованного света в медицине. Аппарат светолечения «Биоптрон»
- •Практическая часть Изучение свойств поляризованного света
- •Изучение работы аппарата «Биоптрон»
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая и рекомендуемая литература
- •Дополнительная литература
- •Лабораторная работа № 17 концентрационная колориметрия
- •Теоретическая часть Закон поглощения света
- •Спектры поглощения
- •Оптическая плотность
- •Применение закона поглощения света
- •Практическая часть Описание установки
- •Порядок выполнения работы Исследование зависимости оптической плотности раствора от длины волны
- •Исследование зависимости оптической плотности от концентрации раствора
- •Определение неизвестной концентрации раствора
- •Контрольные вопросы
- •Использованная и рекомендуемая литература
- •Дополнительная литература
- •Глава IV. Физика атомов и молекул Лабораторная работа № 18 изучение спектра атома водорода
- •Теоретическая часть Основы теории излучения
- •Применение инфракрасного, видимого и ультрафиолетового излучения в медицине
- •Практическая часть Градуировка спектроскопа
- •Изучение спектра атома водорода
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая и рекомендуемая литература
- •Дополнительная литература
- •Глава V. Ионизирующие излучения Лабораторная работа № 19 изучение закона радиоактивного распада и способов защиты от радиоактивного излучения
- •Теоретическая часть Введение Состав атомного ядра
- •Радиоактивность
- •Основной закон радиоактивного распада
- •Активность
- •Взаимодействие ядерных излучений с веществом
- •Дозиметрия ионизирующих излучений
- •Биологическое действие ионизирующих излучений
- •Защита от ионизирующего излучения
- •Применение радиоактивных излучений в медицине
- •Дозиметрические приборы
- •Практическая часть Описание измерителя мощности дозы (рентгенметра) дп- 5б.
- •Порядок выполнения работы
- •Контрольные вопросы
- •Использованная и рекомендуемая литература
- •Дополнительная литература
- •Расчетные формулы:
- •Результаты измерений:
- •Образец отчета по лабораторной работе № 11 изучение работы транзистора
- •Образец отчета по лабораторной работе № 12 электрические методы измерения температуры
- •Образец отчета по лабораторной работе № 13
- •Принцип работы генератора электромагнитных колебаний.
- •Лечебное применение переменного электрического тока
- •Цель работы:
- •Обеспечивающие средства:
- •Результаты измерений и вычислений:
- •Часть 1. Определение индуктивности катушки и емкости конденсатора
- •Вывод по первой части работы:
- •Часть 2. Изучение режимов работы аппарата для низкочастотной электротерапии «Амплипульс-5»
- •Вывод по второй части работы:
- •Образец отчета по лабораторной работе № 14
- •Полупроводниковый фотоэлемент и его
- •Применение для измерения освещенности
- •Расчетные формулы:
- •Результаты измерений и вычислений:
- •Образец отчета по лабораторной работе № 15 лазеры и их применение в медицине
- •Образец отчета по лабораторной работе № 16
- •Свойства поляризованного света.
- •Использование поляризованного света в медицине
- •Результаты измерений и вычислений:
- •Образец отчета по лабораторной работе № 17 концентрационная колориметрия
- •Вывод: образец отчета по лабораторной работе № 18 изучение спектра атома водорода
- •Расчетные формулы и формулы погрешностей:
- •Результаты измерений и вычислений:
- •Образец отчета по лабораторной работе № 19
- •Изучение закона радиоактивного распада
- •И способов защиты от радиоактивного излучения
- •Расчетные формулы:
- •Результаты измерений и вычислений:
- •Вывод: заключение
Взаимодействие ядерных излучений с веществом
К основным свойствам радиоактивных излучений относятся их проникающая и ионизирующая способности.
Ионизирующая
способность излучения оценивается
линейной плотностью ионизации
:
,
(10)
где
–
число ионов одного знака, образованных
ионизирующей частицей на элементарном
пути
.
На практике эта величина оценивается
количеством пар ионов, образованных
частицей на 1 см пробега.
Проникающая способность излучения оценивается длиной свободного пробега или средним линейным пробегом – среднее расстояние, которое проходит частица в данном веществе, пока она способна ионизировать.
Общая картина прохождения частиц высокой энергии через вещество крайне сложна. Частицы сталкиваются с электронами, находящимися на различных оболочках, рассеиваются кулоновскими полями ядер, а при достаточно больших энергиях вызывают и различные ядерные реакции. По механизму прохождения через вещество частицы можно разбить на три группы: 1) тяжелые заряженные частицы; 2) легкие заряженные частицы и 3) -кванты. К легким заряженным частицам относят электроны и позитроны (-лучи), к тяжелым – все остальные.
Взаимодействие тяжелых заряженных частиц с веществом.
Основной механизм взаимодействия тяжелых заряженных частиц с веществом таков. Частица, пролетая сквозь вещество, “расталкивает” атомные электроны своим кулоновским полем. За счет этого частица постепенно теряет энергию, а атомы либо ионизируются, либо возбуждаются. Растеряв свою энергию, частица останавливается. Из-за дальнодействующего характера кулоновских сил пролетающая частица успевает “растолкать” очень большое количество электронов.
Ионизация и возбуждение является первичными процессами. Вторичными процессами могут быть увеличение скорости молекулярного – теплового движения, характеристическое рентгеновское излучение, радиолюминесценция, химические процессы.
Сама пролетающая частица при столкновении с отдельным электроном мало отклоняется от своего пути из-за ее большой массы (сравнительно с массой электрона). К тому же и эти малые отклонения почти целиком компенсируют друг друга при огромном числе хаотически ориентированных столкновений. Поэтому траектория тяжелой заряженной частицы в веществе практически прямолинейна. Потеряв всю энергию, частица останавливается. Расстояние, пройденное частицей в веществе, называется пробегом. Основными физическими величинами, характеризующими прохождение тяжелых частиц, являются потери энергии на единицу пути и полный пробег частицы в веществе.
Средний линейный пробег –частицы зависит от её энергии. В воздухе он равен нескольким сантиметрам, в жидкости и в живом организме – 10 – 100 мкм. После того, как скорость –частицы замедляется до скорости молекулярно-теплового движения, она, захватив два электрона в веществе, превращается в атом гелия.
Взаимодействие –частиц с ядрами значительно более редкий процесс, чем ионизация. При этом возможны ядерные реакции, а так же рассеяние–частиц.
Взаимодействие легких заряженных частиц с веществом.
-излучение кроме возбуждения и ионизации атомов вещества может вызывать и другие процессы, т к. прохождение электронов и позитронов (-лучей) через вещество качественно отличается от прохождения остальных заряженных частиц. Главной причиной этого является малость масс электрона и позитрона. Из-за малости массы для налетающего электрона (позитрона) относительно велико изменение импульса при каждом столкновении в веществе. А это в свою очередь приводит к тому, что электрон, во-первых, может значительно отклоняться от первоначального направления движения и, во-вторых, может порождать при столкновениях кванты электромагнитного излучения.
Первый из упомянутых эффектов проявляется в том, что электрон движется в веществе не по прямой; за счет же второго эффекта для электронов становятся существенными радиационные потери, т.е. потери энергии на электромагнитное излучение. При торможении электронов возникает тормозное рентгеновское излучение. Если электрон движется в среде со скоростью, превышающей скорость распространения света в этой среде, то возникает характерное черенковское излучение (излучение Черенкова – Вавилова). При попадании β+-частицы (позитрона) в веществ с большой вероятностью происходит такое взаимодействие ее с электроном, в результате которого вместо пары электрон – позитрон образуется два γ–фотона. Этот процесс называют аннигиляцией.
Для электронов вводят две величины, соответствующие пробегу: максимальный пробег и средний пробег. Максимальным пробегом называется минимальная толщина слоя вещества, в котором задерживаются все электроны.
Взаимодействие - лучей с веществом.
Подобно заряженным частицам (и в отличие от нейтронов), пучок - квантов поглощается веществом в основном за счет электромагнитных взаимодействий. Однако механизм этого поглощения существенно иной. На это есть две причины. Во-первых, - кванты не имеют электрического заряда и тем самым не подвержены влиянию дальнодействующих кулоновских сил. Поэтому - кванты при прохождении через вещество сравнительно редко сталкиваются с электронами и ядрами, но зато при столкновении, как правило, резко отклоняются от своего пути, т.е. практически выбывают из пучка. Вторая отличительная особенность - квантов состоит в том, что они обладают нулевой массой покоя и, следовательно, не могут иметь скорости, отличной от скорости света. А это значит, что - кванты в среде не могут замедляться. Они либо поглощаются, либо рассеиваются, причем в основном на большие углы.
При рассмотрении механизма прохождения - излучения через вещество нельзя ограничиться классическими волновыми представлениями об излучении, а приходится учитывать квантовую, корпускулярную природу света. Квантовые свойства становятся важными потому, что длина волны - кванта значительно меньше расстояний между атомами и между электронами.
Поглощение - излучения веществом в основном происходит за счет трех процессов: а) фотоэффекта; б) комптон-эффекта; в) рождения электронно-позитронных пар в кулоновском поле ядра.
Фотоэффектом называется процесс, при котором атом поглощает - квант и испускает электрон. С достаточной для практических приложений точностью можно считать, что каждый квант поглощается одним атомным электроном.
Основные особенности фотоэффекта связаны с тем, что свободный электрон не может поглотить фотон из-за совместного действия законов сохранения энергии и импульса. Отсюда следует, что фотоэффект наиболее интенсивно будет идти для - квантов с энергиями, сравнимыми с энергиями связи электронов в атомах. Энергия связи электрона в атоме тем больше, чем глубже электронная оболочка и чем больше атомный номер Z. Поэтому фотоэффект идет, во-первых, в основном с низшей, т.е. с К-оболочки, а во-вторых, тем интенсивней, чем больше средний атомный номер Z вещества. Вероятность фотоэффекта быстро падает с увеличением энергии - квантов и очень сильно зависит от атомного номера. При фотоэлектрическом поглощении - лучей с помощью экранов существенно, поэтому иметь в составе защиты элементы с большим Z, например свинец.
Комптоновским рассеянием (или комптон-эффектом) называется упругое столкновение - кванта с электроном. При таком столкновении -квант передает электрону часть своей энергии, величина которой определяется углом рассеяния.
В отличие от фотоэффекта, который может идти только на сильно связанных электронах, комптоновское рассеяние может происходить и на свободных электронах. При малых энергиях -квантов их поглощение определяется главным образом фотоэффектом, и комптоновское рассеяние не играет существенной роли. Роль комптон-эффекта становится существенной только тогда, когда энергия квантов становится много больше энергии связи электронов в атоме. Атомные электроны в этом случае можно считать практически свободными, что обычно и делается при теоретическом анализе.
Процесс рождения электронно-позитронных пар в поле ядра состоит в том, что квант поглощается, а рождаются и вылетают электрон и позитрон. При этом ядро получает некоторый импульс отдачи. Согласующийся с опытом квантово-электродинамический расчет показывает, что поглощение фотона и рождение пары происходит не внутри ядра, а около него в области, имеющей размер порядка комптоновской длины волны электрона. Передача импульса отдачи ядру происходит через посредство его кулоновского поля. Без передачи импульса постороннему телу превращение фотона в электронно-позитронную пару запрещено законами сохранения энергии-импульса.
Так как масса покоя фотона равна нулю, то превратиться в пару он может, только имея энергию больше суммы энергий покоя электрона и позитрона 2mc2 = 1,02 МэВ. Поскольку вероятность фотоэффекта и комптон-эффекта в области высоких энергий спадают практически до нуля, то рождение пар становится здесь основным механизмом поглощения - излучения. Вероятность образования пар приблизительно пропорциональна Z2.
Для -квантов не существует понятий пробега, максимального пробега, потерь энергии на единицу длины. При прохождении пучка -квантов через вещество их энергия не меняется, но в результате столкновений постепенно ослабляется интенсивность пучка.