
- •Глава I. Механика 7
- •Глава II. Общая и медицинская электроника 14
- •Глава III. Оптика 67
- •Глава IV. Физика атомов и молекул 124
- •Глава V. Ионизирующие излучения 142
- •Предисловие
- •Методические указания
- •Глава I. Механика Лабораторная работа № 10 определение моментов инерции с помощью крутильного маятника
- •Теоретическая часть Момент инерции
- •Теория подобия
- •Экспериментальная часть Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Глава II. Общая и медицинская электроника
- •Теоретическая часть Полупроводники
- •Полупроводниковый диод (p-n переход)
- •Физические основы работы транзистора
- •Характеристики транзистора
- •Устройство и применение транзистора
- •Практическая часть Описание установки
- •При выполнении работы необходимо соблюдать следующие правила:
- •Включать и выключать напряжение на коллекторе uэк можно только при наличии напряжения на базе uэб.
- •Напряжение на базе uэб не должно превышать 2 в.
- •Напряжение на коллекторе uэк не должно превышать 12 в.
- •Определение цены деления измерительных приборов
- •Порядок выполнения работы
- •Контрольные вопросы
- •Теоретическая часть Термометрия
- •Зависимость сопротивления металлов и полупроводников от температуры
- •Термометры сопротивления. Терморезисторы (термисторы)
- •Контактная разность потенциалов. Термоэдс
- •Термопара
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Рекомендуемая и использованная литература
- •Дополнительная литература
- •Лабораторная работа № 13 принцип работы генератора электромагнитных колебаний. Лечебное применение переменного электрического тока
- •Теоретическая часть Введение
- •Колебательный контур. Формула Томсона
- •Получение незатухающих колебаний в контуре
- •Принцип работы генератора электромагнитных колебаний на транзисторе
- •Амплитудно-модулированные синусоидальные сигналы
- •Лечебное применение переменного электрического тока Методы лечебного применения импульсного и переменного электрического тока
- •Физические процессы в тканях при воздействии переменным и импульсным электрическим током
- •Пороговые значения переменного тока
- •Низкочастотная электротерапия
- •Первичные механизмы действия переменных электрических токов в физиотерапевтических процедурах
- •Назначение и блок-схема аппарата «Амплипульс-5»
- •Практическая часть Описание установки. Вывод расчетных формул
- •Порядок выполнения работы
- •Часть I Определение индуктивности катушки и емкости конденсатора с помощью генератора электромагнитных колебаний
- •Часть II Изучение режимов работы аппарата для низкочастотной терапии «Амплипульс-5».
- •Контрольные вопросы
- •Использованная и рекомендуемая литература
- •Дополнительная литература
- •Глава III. Оптика Лабораторная работа № 14 полупроводниковый фотоэлемент и его применение для измерения освещенности
- •Теоретическая часть Фотоэффект и его применение.
- •Фотометрические величины и единицы. Принцип действия люксметра
- •Практическая часть Градуировка микроамперметра
- •Измерение освещенности с помощью полупроводникового фотоэлемента.
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа № 15
- •На этих свойствах основано применение лазеров. Применение лазеров в медицине
- •Дифракция света на щели
- •Дифракционная решетка
- •Практическая часть Определение длины волны лазерного излучения
- •Определение постоянной дифракционной решетки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая и рекомендуемая литература
- •Дополнительная литература
- •Лабораторная работа № 16 свойства поляризованного света. Использование поляризованного света в медицине
- •Теоретическая часть Естественный и поляризованный свет. Закон Малюса
- •Применение поляризованного света в медицине. Аппарат светолечения «Биоптрон»
- •Практическая часть Изучение свойств поляризованного света
- •Изучение работы аппарата «Биоптрон»
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая и рекомендуемая литература
- •Дополнительная литература
- •Лабораторная работа № 17 концентрационная колориметрия
- •Теоретическая часть Закон поглощения света
- •Спектры поглощения
- •Оптическая плотность
- •Применение закона поглощения света
- •Практическая часть Описание установки
- •Порядок выполнения работы Исследование зависимости оптической плотности раствора от длины волны
- •Исследование зависимости оптической плотности от концентрации раствора
- •Определение неизвестной концентрации раствора
- •Контрольные вопросы
- •Использованная и рекомендуемая литература
- •Дополнительная литература
- •Глава IV. Физика атомов и молекул Лабораторная работа № 18 изучение спектра атома водорода
- •Теоретическая часть Основы теории излучения
- •Применение инфракрасного, видимого и ультрафиолетового излучения в медицине
- •Практическая часть Градуировка спектроскопа
- •Изучение спектра атома водорода
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая и рекомендуемая литература
- •Дополнительная литература
- •Глава V. Ионизирующие излучения Лабораторная работа № 19 изучение закона радиоактивного распада и способов защиты от радиоактивного излучения
- •Теоретическая часть Введение Состав атомного ядра
- •Радиоактивность
- •Основной закон радиоактивного распада
- •Активность
- •Взаимодействие ядерных излучений с веществом
- •Дозиметрия ионизирующих излучений
- •Биологическое действие ионизирующих излучений
- •Защита от ионизирующего излучения
- •Применение радиоактивных излучений в медицине
- •Дозиметрические приборы
- •Практическая часть Описание измерителя мощности дозы (рентгенметра) дп- 5б.
- •Порядок выполнения работы
- •Контрольные вопросы
- •Использованная и рекомендуемая литература
- •Дополнительная литература
- •Расчетные формулы:
- •Результаты измерений:
- •Образец отчета по лабораторной работе № 11 изучение работы транзистора
- •Образец отчета по лабораторной работе № 12 электрические методы измерения температуры
- •Образец отчета по лабораторной работе № 13
- •Принцип работы генератора электромагнитных колебаний.
- •Лечебное применение переменного электрического тока
- •Цель работы:
- •Обеспечивающие средства:
- •Результаты измерений и вычислений:
- •Часть 1. Определение индуктивности катушки и емкости конденсатора
- •Вывод по первой части работы:
- •Часть 2. Изучение режимов работы аппарата для низкочастотной электротерапии «Амплипульс-5»
- •Вывод по второй части работы:
- •Образец отчета по лабораторной работе № 14
- •Полупроводниковый фотоэлемент и его
- •Применение для измерения освещенности
- •Расчетные формулы:
- •Результаты измерений и вычислений:
- •Образец отчета по лабораторной работе № 15 лазеры и их применение в медицине
- •Образец отчета по лабораторной работе № 16
- •Свойства поляризованного света.
- •Использование поляризованного света в медицине
- •Результаты измерений и вычислений:
- •Образец отчета по лабораторной работе № 17 концентрационная колориметрия
- •Вывод: образец отчета по лабораторной работе № 18 изучение спектра атома водорода
- •Расчетные формулы и формулы погрешностей:
- •Результаты измерений и вычислений:
- •Образец отчета по лабораторной работе № 19
- •Изучение закона радиоактивного распада
- •И способов защиты от радиоактивного излучения
- •Расчетные формулы:
- •Результаты измерений и вычислений:
- •Вывод: заключение
Зависимость сопротивления металлов и полупроводников от температуры
При изменении температуры изменяется проводимость чистых металлов, сплавов и полупроводников.
Экспериментально установлено, что при повышении температуры сопротивление металлов увеличивается. При не слишком низких температурах сопротивление металлов растет пропорционально абсолютной температуре Т:
,
(1)
где
– сопротивление при температуре
,
- постоянный коэффициент, приблизительно
равный 1/273 К-1.
Соотношение (1) можно представить в виде
,
(2)
где – температура в oС, т.е. температурная зависимость сопротивления металлов линейна (рис.2).
Причинами электрического сопротивления в металлах являются посторонние примеси и физические дефекты кристаллической решетки металла, а также тепловое движение атомов металла, амплитуда колебаний которых зависит от температуры. Подвижность свободных носителей заряда (электронов) уменьшается при повышении температуры из-за возрастания числа столкновений с атомами кристаллической решетки металла, что приводит к росту сопротивления.
У полупроводников с ростом температуры подвижности носителей заряда (электронов и дырок) тоже падают, но это не играет заметной роли, т.к. рост концентрации является преобладающим. В результате сопротивление полупроводников с увеличением температуры Т практически уменьшается по экспоненциальному закону (рис.2):
,
(3)
где R0 , b – константы, зависящие от природы полупроводника, e – основание натуральных логарифмов.
На рис.2 приведена зависимость электрического сопротивления полупроводников от температуры, эта зависимость носит резко выраженный характер.
Термометры сопротивления. Терморезисторы (термисторы)
Сопротивление металлов при изменении температуры на 1 К изменяется примерно на 0,4 – 0,6 %, у полупроводников соответствующее изменение сопротивления в 8 – 10 раз больше, чем у металлов.
Это свойство металлов и полупроводников используется для измерения температуры. Приборы, основанные на зависимости сопротивления металлов от температуры, называются термометрами сопротивления, в случае полупроводников – терморезисторами или термисторами.
Рис.2
Термометры сопротивления изготовляются из тонкой металлической проволоки, намотанной на каркас из изолирующего материала. Они имеют линейную характеристику R = f (t).
Чувствительным элементом терморезистора (термистора) является кристаллический полупроводник, имеющий очень малые размеры, что делает терморезисторы очень удобными для медицинских и биологических исследований.
Миниатюрными термисторами измеряют температуру разных участков кожи больного, крошечные чувствительные элементы термисторов можно вводить прямо в кровеносный сосуд. Вследствие малых размеров терморезисторы обладают малой теплоемкостью, что значительно повышает точность измерения температуры. Чувствительность некоторых термисторов настолько велика, что на их основе строят особые приемники лучистой энергии – болометры. Болометры могут уловить за несколько километров инфракрасные (тепловые лучи), испускаемые человеческой кожей.
Существенным недостатком терморезистора является нелинейность его характеристики. Однако характеристики отдельных элементов отличаются высокой стабильностью во времени.
Для измерения температуры термометрами сопротивления и терморезисторами их предварительно градуируют, т.е. строят график зависимости сопротивления R от температуры t.