
Лекция № 6 (2.3.) Катушки индуктивности
1. Классификация и основные технические параметры катушек индуктивности
2. Основные элементы катушек индуктивности
3. Расчет индуктивности и собственной емкости катушек индуктивности
Классификация и основные технические параметры катушек индуктивности
Как магнитное, так и электрическое поля создаются тем или иным элементом цепи. В случае статических полей, магнитное и электрическое поля могут существовать независимо друг от друга. Переменное же электрическое поле всегда неразрывно связано с беременным магнитным полем. Однако, несмотря на эту связь, можно выделить детали, назначение которых состоит в создании или в преимущественном использовании одного из этих полей. Применительно к электрическому полю такими деталями являются конденсаторы, а применительно к магнитному - детали, называемые катушками индуктивности.
Любой проводник с током создает в окружающем его пространстве магнитное поле. Для концентрации поля в заданном локальном объеме проводник с током свертывается в цилиндрическую спираль, называемую в электротехнике соленоидом.
В радиоэлектронике вместо термина "соленоид" используется наименование «катушка индуктивности»(лат.inductio- наведение). Используя различное число витков, изменяя их форму или помещая внутрь катушки сердечник с повышенным значением, можно при одной и той же величине тока, протекающего через катушку, создавать магнитное поле различной интенсивности.
Классификация катушек индуктивности
Катушки индуктивности можно классифицировать по ряду признаков.
По конструкцииони подразделяются на:
однослойные и многослойные,
на каркасах и бескаркасные,
с сердечниками и без сердечников,
на экранированные и неэкранированные,
высокочастотные (обладающие индуктивным характером полного сопротивления в диапазоне частот от 100 кГцдо400 МГц) и низкочастотные и т.д.
По назначениюкатушки индуктивности подразделяются на:
контурные,
катушки связи,
дроссели высокой и низкой частоты и т.п.
Основные характеристики и параметры катушек индуктивности
Основными характеристиками катушек являются индуктивность, собственная емкость, активное сопротивление и добротность, температурная стабильность индуктивности. Рассмотрим эти параметры.
Индуктивность катушки L- основной параметр, определяющий реактивное сопротивление, которым обладает катушка в электрической цепи. При расчете индуктивности катушек различной конструкции пользуются полуэмпирическими формулами и вспомогательными графиками, приводимыми в справочной литературе. В отличие от конденсаторов и резисторов, номинальные значения индуктивности катушек (исключение составляют унифицированные ВЧ и НЧ дроссели) ГОСТами не нормируются, а определяются исходя из стандартов предприятий или технических условий на конкретную аппаратуру. В РЭА применяются катушки с индуктивностью от долей микрогенри (контурные высокочастотные) до десятков генри (дроссели фильтров выпрямителей). Контурные катушки по величине индуктивности изготовляются с точностью0,2...0,5%,а для других катушек индуктивности допустима точность10...15%.
Собственная емкостькатушкиCLобусловлена существованием электрического поля между ее отдельными витками, а также между отдельными витками и корпусом (и экраном, если он имеется)прибора. Обычно считают(кадр 1),что собственная емкость катушки состоит из внутреннеймежвитковой емкостиC ВН = C ВН iимонтажной емкостиCМ = C М i,т. е. CL = C ВН + CМ.
С увеличением диаметра намотки и уменьшением ее шага емкость C ВН возрастает. Существенное увеличение емкостиC ВН происходит при использовании каркасов катушек из материалов с повышенным значением.
Монтажная емкость CМзависит от расположения катушки по отношению к шасси устройства, другим деталям, от размеров и формы экрана, если катушка экранирована. Из-за сложной конфигурации электрических полей точный расчет емкостиCLпрактически невозможен и ее величину обычно определяют экспериментально. У применяемых в РЭА катушек индуктивности величинаCL обычно составляет от единиц до десятков и (при многослойной намотке) пикофарад.
Сопротивление потерь. Добротность катушки индуктивности. На низких частотах активное сопротивление катушки индуктивности можно считать равным сопротивлению провода ее обмотки на постоянном токе. С переходом на более высокие частоты начинает проявлятьсяповерхностный эффекти активное сопротивление катушки возрастает. Кроме того, при сворачивании провода в спираль, т.е. при его намотке на катушку, магнитное поле проводника искажается вследствие появления магнитной связи между отдельными витками, и оно оказывается несимметричным относительно сечения провода. Это, в свою очередь, приводит к неравномерному распределению тока по периметру сечения проводника: внутри витка плотность тока будет выше. Смещение тока высокой частоты к оси обмотки катушки носит названиеэффекта близости. Его влияние также увеличивает активное сопротивление катушки.
Таким образом, можно считать, что активное сопротивление провода обмотки на переменном токе R~= RПЭ +RБ, гдеRПЭ- составляющая сопротивления, зависящая от поверхностного эффекта,RБ.- составляющая, показывающая дополнительное возрастание сопротивления провода обмотки вследствие эффекта близости.
Эффект близости, наоборот, проявляется более заметно с возрастанием диаметра провода d, т.е. с увеличением диаметра величинаR Бвозрастает. Нарис.2.3.2показаны кривые этих зависимостей и зависимость полного сопротивления провода обмотки R~ = R ПЭ +R Б = f(d) от его диаметра. Для каждого значения частоты переменного тока существует оптимальный диаметр проводаdОПТ, при котором активное сопротивление катушкиR~ = R MIN, т.е. оно минимально.
Сопротивление провода R~ на частотах до 1МГцможно уменьшить на30...40%,если вместо провода круглого сечения для намотки катушки применитьлитцендрат - многожильный провод, состоящий из отдельных перевитых друг с другом проводников малого сечения, изолированных друг от друга. Это объясняется тем, что поверхность литцендрата оказывается намного больше поверхности монолитного провода, имеющего ту же площадь поперечного сечения.
Величину R~ как параметр катушки для сравнения между собой различных катушек обычно не используют. Ею пользуются лишь для теплового расчета катушек индуктивности в выходных каскадах мощных радиопередатчиков.
Для сравнения между собой отдельных катушек удобнее использовать параметр, определяющий активные потери как относительную величину, определяемую сравнением энергии W R, которая затрачивается в сопротивленииR~ за период гармонического колебания, с максимальной энергиейW L,запасаемой в магнитном поле катушки. Отношение
W L, / W R = L / 2R~
и характеризует качество катушки. Однако для упрощения расчетов параметром катушки принято считать величину в 2раз большуюW L, / W R:
Q = L / R~ (2.3.1)
Эта величина называется добротностьюкатушки индуктивности.
Чем выше добротность, тем меньше величина потерь в катушке и выше ее качество. Значение Qопределяется выбором типа обмотки, материала каркаса, конструкцией катушки и влиянием окружающих катушку других деталей при ее монтаже в аппаратуре.
В зависимости от влияния перечисленных факторов добротность применяемых в РЭА катушек обычно лежит в пределах 50...600, а при наличии сердечников может быть и выше.
Температурный коэффициент индуктивности.Изменение температуры окружающей среды приводит к тому, что меняются длина и диаметр провода обмотки, размеры каркаса катушки, диэлектрическая проницаемость материала каркаса и изоляции и т.д. Это приводит к изменению индуктивности катушки и ее добротности. Мерой зависимости индуктивности катушки от температуры являетсятемпературный коэффициент индуктивности(ТКИ),определяемый аналогично другим температурным коэффициентам. Для катушек с многослойной обмоткойТКИ = (50...500)10 - 6 К, для катушек с однослойной обмоткой ТКИ существенно ниже.
Для повышения температурной стабильности катушек применяют пропитку их каркасов и изоляции, используют керамические каркасы с обмоткой, выполненной методом вжигания серебра, и герметизацию катушек. можно считать, что добротность катушек снижается в среднем на 1 %на каждые3°сприращения температуры по отношению к их добротности при20°с. воздействие влаги может привести к существенному изменению (до30 %) собственной емкости и добротности катушек. Обычно это изменение носит обратимый характер, и после сушки величиныq иclпринимают практически прежние значения.