
- •1 Геометрична та хвильова оптика
- •1.1 Предмет оптики. Дуалізм світла
- •1.2 Закони геометричної оптики:
- •1.2.1 Граничний кут відбивання. Геометрична та оптична різниця ходу променя
- •1.3 Хвильова оптика. Інтерференція
- •1.3.1 Інтерференція світла. Когерентність
- •1.3.2 Часова і просторова когерентність
- •1.3.3 Розрахунок інтерференційної картини від двох джерел
- •1.3.4 Інтерференція на тонкій плоскопаралельній пластинці
- •1.4 Хвильова оптика. Дифракція
- •1.4.1 Дифракція та її види
- •1.4.2 Принцип Гюйгенса-Френеля. Метод зон Френеля для розрахунку дифракційної картини
- •1.4.3 Дифракція на круглому отворі та круглому диску
- •1.4.4 Дифракція на щілині. Дифракційна гратка (дифракційна решітка)
- •1.4.5 Дифракція х-променів
- •1.5 Хвильова оптика. Дисперсія світла та її пояснення на основі електронної теорії
- •1.6 Хвильова оптика. Поляризоване світло
- •1.6.1 Методи отримання поляризованого світла. Закон Брюстера
- •1.6.2 Подвійне променезаломлення. Штучна анізотропія
- •1.6.3 Закон Малюса
- •2 Квантова оптика
- •2.1 Теплове випромінювання
- •2.1.1 Теплове випромінювання і люмінесценція (свічення)
- •2.1.2 Закони теплового випромінювання
- •2.1.7 Оптична пірометрія та її застосування
- •2.2 Фотони
- •2.2.1 Фотоефект. Види фотоефекту. Закони фотоефекту. Фотодіоди та фоторезистори
- •2.2.2 Фотони. Їх властивості
- •2.2.3 Ефект Комптона
- •2.3 Х (рентгенівське)-випромінювання
- •2.3.1 Отримання х-(рентгенівських) променів, гальмівне хвипромінювання
- •2.3.2 Характеристичне випромінювання. Закон Мозлі. Застосування рентгенівського випромінювання
- •3 Фізика атома і молекули
- •3.1 Спектри випромінювання і поглинання атомів. Спектр атома водню. Формула Бальмера
- •3.2 Будова атома за моделлю Резерфорда та її недоліки
- •3.3 Постулати Бора. Досліди Франка і Герца
- •3.4 Атом водню та його енергія згідно теорії Бора. Недоліки теорії Бора
- •3.5 Гіпотеза де Бройля та її експериментальне підтвердження
- •3.6 Співвідношення невизначеностей, або співвідношення Гейзенберга
- •3.7 Рівняння Шредінгера
- •3.8 Хвильова функція. Її властивості. Фізичний зміст хвильової функції
- •3.9 Електрон в потенціальному ящику
- •3.10 Поняття про гармонійний осцилятор в квантовій механіці
- •3.11 Тунельний ефект
- •3.12 Задача про електрон в атомі водню. Квантові числа n, , m
- •3.13 Енергетичні рівні. Молекулярні спектри
- •3.13.1 Періодична система Менделєєва та її побудова на основі заповнення енергетичних рівнів за принципом Паулі
- •3.13.2 Ефект Зеємана. Дослід Штерна і Герлаха
- •3.13.3 Електронний парамагнітний резонанс (епр)
- •3.13.4 Енергетичний спектр молекул
- •3.14 Вимушене і спонтанне випромінювання. Лазери
- •3.14.1 Комбінаційне розсіяння
- •3.14.2 Спонтанне і вимушене випромінювання. Доведення формули Планка на основі принципа детальної рівноваги
- •3.14.3 Лазери. Принцип роботи
- •3.15 Лазери (оптичні квантові генератори) та інші джерела кпе (концентрованих потоків енергії)
- •3.15.1 Фізико-технічні принципи побудови оптичних квантових генераторів. Блок-схема окг
- •3.15.2 Види концентрованих потоків енергії. Їх загальна характеристика
- •4 Елементи фізики твердого тіла
- •4.1 Кристалічна гратка. Індекси Міллера
- •4.2 Теплоємність кристалів
- •4.2.1 Закон Дюлонга-Пті
- •- Закон Дюлонга-Пті.
- •4.2.2 Квантова теорія теплоємності
- •4.3 Фонони
- •4.4 Елементи фізичної статистики
- •4.4.1 Невироджені і вироджені колективи мікрочастинок. Повна статистична функція розподілу
- •4.4.2 Фазовий простір. Густина станів
- •4.4.3 Розрахунок концентрації електронів та енергії Фермі в металах при 0к
- •4.4.4 Функція Фермі Дірака. Графік функції та аналіз
- •4.5 Утворення зон кристала. Класифікація твердих тіл згідно зонної теорії
- •4.6 Елементи квантової теорії металів. Надпровідність
- •4.6.1 Електропровідність металів
- •4.6.2 Теплоємність металів з точки зору квантової теорії. Зв’язок виродження стану електронів (вироджений і невироджений стан) та енергії Фермі
- •4.6.3 Явище надпровідності. Куперовські пари. Елементи теорії бкш (автори Бардін, Купер, Шріфер)
- •4.6.4 Висновок
- •4.7 Напівпровідники
- •4.7.1 Основні особливості напівпровідників як класу речовин. Напівпровідникові матеріали, напрямки їх застосування
- •4.7.2 Власна і домішкова провідність напівпровідників. Електрони та дірки. Донори та акцептори
- •4.7.3 Температурна залежність провідності напівпровідників
- •4.8 Напівпровідникові прилади
- •4.8.2 Вольтамперна характеристика p-n-переходу. Напівпровідникові діоди та інші прилади із одним p-n-переходом
- •4.8.3 Транзистор
- •5 Фізика ядра та елементарних частинок
- •5.1 Основні характеристики атомного ядра. Властивості нейтронів і протонів
- •5.2 Радіоактивність. -, -розпад
- •5.3 Закон радіоактивного розпаду. Штучна і природня радіоактивність
- •5.4 Дефект маси ядра. Енергія зв’язку
- •5.5 Ядерні сили та їх властивості
- •5.6 Моделі атомного ядра
- •5.7 Ядерні реакції. Компаунд ядро. Реакції поділу та синтезу
- •5.8 Фундаментальні взаємодії
- •5.8.1 Гравітаційна взаємодія
- •5.8.2 Сильна взаємодія
- •5.8.3 Електромагнітна взаємодія
- •5.8.4 Слабка взаємодія
- •5.9 Елементарні частинки
- •5.9.1 Особливості елементарних частинок
- •5.9.2 Класи елементарних частинок
- •5.10 Космічне випромінювання
- •5.11 Ядерна енергетика
- •5.11.1 Поділ ядра урана. Сповільнення нейтронів. Захоплення нейтронів. Коефіцієнт розмноження. Ланцюгова реакція
- •5.11.2 Схема двохконтурної атомної електростанції на сповільнених нейтронах
- •5.11.3 Проблеми та перспективи термоядерних реакторів
- •5.11.4 Біологічна дія радіоактивних випромінювань та одиниці вимірювання іонізуючих випромінювань
- •5.12 Методи реєстрації частинок
- •5.12.1 Сцинтиляційні лічильники. Іонізаційний лічильник Гейгера-Мюллера. Напівпровідникові детектори
- •5.12.2 Реєстрація нейтронів. Камера Вільсона
- •6.2 Ефект Джозефсона
- •6.3 Феромагнетизм та його спінова природа
- •6.3.1 Основні властивості феромагнетиків (фм)
- •6.3.2 Сили обмінної взаємодії. Спінова природа феромагнетизму
- •6.4 Ефект Месбауера
- •6.4.1 Резонансне поглинання і випускання атомів
- •6.4.2 Ефект Месбауера і його застосування
- •6.5 Фотометричні величини і одиниці
- •Геометрична та хвильова оптика.
2.3.2 Характеристичне випромінювання. Закон Мозлі. Застосування рентгенівського випромінювання
Вакантні місця виникають при вириванні електронами, що бомбардують антикатод, електронів із внутрішніх оболонок атомів антикатоду. Це буде при напрузі між анодом (антикатод) і катодом >10 кВ.
Кожна речовина має свій лінійчастий спектр, характерний тільки для неї (звідси так і називається це випромінювання). Його властивості:
Залежить від будови елементу, з якого зроблений антикатод.
Залежить від прикладеної напруги до трубки.
Частота характеристичного випромінювання визначається формулою:
- закон Мозлі
(експериментальна залежність),
- частота, b=const, - стала екранування, z – порядковий номер елемента (антикатода)
- закон Мозлі
виражений через квантові числа рівнів
електронів, що здійснюють переходи при
випусканні Х-променів
R – стала Рідберга, n1, n2 –цілі квантові числа.
Лінії в характеристичному спектрі об’єднуються в серії, в кожній серії вони мають певний порядок розташування. Якщо n1 надати постійного значення, а n2 змінювати, причому n2> n1, то отримаємо спектральну серію. Відповідно для n1=1,2,3… отримуємо серії характеристичного випромінювання, що позначається буквами K, L, M, N і т.д.
Застосування рентгенівського (Х-) випромінювання: медицина; кристалографія і матеріалознавство, рентгено-структурний аналіз; визначення якостей конструкцій в промисловості і будівництві; біологічні процеси та керування ними.
3 Фізика атома і молекули
3.1 Спектри випромінювання і поглинання атомів. Спектр атома водню. Формула Бальмера
Розрізняють три види спектрів:
Лінійчастий – характерний для атомів, що не взаємодіють між собою.
Смугастий – характерний для рідин.
Суцільний - характерний для твердих тіл.
Суцільність спектру випромінювання пояснюється значною концентрацією атомів в твердому тілі в порівнянні з газом.
Спектр атомів
складається із серій ліній; в кожній
серії частота лінії має певне значення,
яке може бути визначене для атома водню
за формулою:
- узагальнена формула Бальмера
Формула Бальмера описує тільки спектри атомів водню. Спектри інших атомів описуються складнішими залежностями.
Для видимого діапазону формула Бальмера
представляється як:
m>2.
3.2 Будова атома за моделлю Резерфорда та її недоліки
На рис. 3.1 схематично показано дослід Резерфорда по бомбардуванню фольги -частинками і їх розсіянню, що проводився з метою встановлення будови атома. Виявилось, що деякі із них при цьому повертаються навіть на 180. Це показує існування малої за розмірами і великої за масою позитивно зарядженої частинки (ядра), навколо якої, за моделлю Резерфорда, обертаються від’ємно заряджені електрони*.
Модель атома Резерфорда мала два основних недоліки:
Якщо вважати, що система електрони-ядро нерухома, то вона повинна бути нестабільною
Якщо ж вважати, що електрони обертаються навколо ядра, то вони повинні падати на ядро внаслідок руху із прискоренням, тому, що мають випромінювати при цьому енергію.