
- •Основы электроники Курс лекций
- •1. Введение
- •Историческая справка
- •Области, основные разделы и направления электроники
- •Перспективы развития электроники
- •2. Элементы электронных схем
- •Полупроводниковые диоды
- •Примеры обозначения приборов:
- •3. Биполярные транзисторы
- •4. Полевые транзисторы
- •5. Тиристоры
- •Классификация и система обозначений тиристоров
- •6. Оптоэлектронные приборы
- •Излучающий диод (светодиод)
- •Фоторезистор
- •Фотодиод
- •Оптрон (оптопара)
- •Фототранзистор и фототиристор
- •7. Операционные усилители
- •8. Интегральные микросхемы
- •9. Аналоговые электронные устройства Усилители
- •Обратная связь в усилителях
- •Усилители на биполярных транзисторах
- •Усилители на полевых транзисторах
- •10. Линейные схемы на основе операционных усилителей
- •Инвертирующий усилитель на основе оу
- •Неинвертирующий усилитель на основе оу
- •Повторитель напряжения на основе оу
- •Сумматор напряжения (инвертирующий сумматор)
- •Вычитающий усилитель (усилитель с дифференциальным входом)
- •Схемы с диодами и стабилитронами на основе оу
- •11. Усилители постоянного тока
- •Дифференциальный усилитель на биполярных транзисторах
- •Усилитель постоянного тока с модуляцией и демодуляцией (усилитель типа мдм)
- •Услители мощности (мощные выходные усилители)
- •Трансформаторные усилители мощности
- •Бестрансформаторные усилители мощности
- •12. Электронные фильтры
- •Классификация фильтров по виду их амплитудно-частотных характеристик
- •Классификация фильтров по передаточным функциям
- •Активные фильтры
- •13. Генераторы гармонических колебаний
- •14. Вторичные источники питания
- •15. Цифровая и импульсная электроника
- •Транзисторные ключи
- •Логические элементы
- •16. Комбинационные цифровые устройства
- •Последовательностные цифровые устройства
- •17. Цифровые запоминающие устройства
- •18. Устройства для формирования и аналого-цифрового преобразования сигналов
- •Цифроаналоговые преобразователи
- •Аналого-цифровые преобразователи
- •Генераторы импульсных сигналов
- •Литература
Сумматор напряжения (инвертирующий сумматор)
Рассмотрим схему сумматора, приведенную на рис. 10.5.
Рис. 10.5. Сумматор напряжения (инвертирующий сумматор)
Предположим,
что операционный усилитель работает в
режиме усиления, тогда uдиф
0. Учитывая, чтоi–=
i+=
0, получим
.
Приuдиф
0 получимuRj
= uвхj,
j
= 1,…,n;
uRос
= uвых.
На основании этих выражений после
несложных преобразований получаем
.
Для уменьшения влияния входных токов ОУ в цепь неинвертирующего входа включают резистор с сопротивлением
Rэ = R1 // R2 //… // Rn // Rос .
Вычитающий усилитель (усилитель с дифференциальным входом)
В вычитающем усилителе (рис. 10.6) один входной сигнал подается на инвертирующий вход, а второй – на неинвертирующий.
Рис. 10.6. Вычислительный усилитель с дифференциальным входом
Предположим, что ОУ работает в линейном режиме. Тогда все устройство можно считать линейным и для анализа принцип суперпозиции (наложения).
Если uвх2 = 0, тогда соответствующее выходное напряжение u'вых будет определяться выражением, соответствующим инвертирующему усилителю:
.
Если uвх1 = 0, определим напряжение на выходе u''вых. Для оценки воздействия напряжения uвх2 целесообразно на основе теоремы об эквивалентном генераторе преобразование цепи, подключенной к неинвертирующему входу (рис. 10.7).
Как следует из теоремы,
,
.
Рис. 10.7
В соответствии с принципом суперпозиции, общее напряжение на выходе uвых определяется из выражения
,
при R1=R2=R3=R4
.
Схемы с диодами и стабилитронами на основе оу
Рассматриваемые схемы являются нелинейными, так как содержат нелинейные элементы – диоды и стабилитроны. Однако такие схемы часто рассматривают как линейные, считая диоды и стабилитроны идеальными и заменяя открытые диоды и стабилитроны закоротками, запертые диоды и стабилитроны – разрывами, а стабилитроны, работающие в режиме пробоя, - источниками напряжения.
При использовании подобных способов линеаризации нелинейных схем основная проблема состоит в том, чтобы определить, в каком режиме работает каждый нелинейный элемент.
Для примера выполним анализ схемы на рис. 10.8, предполагая, что диоды – идеальные. Пусть вначале uвх = 1 В. Если диод D1 открыт (заменяем его закороткой), а диод D2 – закрыт (заменим его разрывом), то получим эквивалентную схему, приведенную на рис. 10.9.
Рис. 10.8. Схема усилителя на ОУ с диодами
Рис. 10.9. Эквивалентная схема усилителя на ОУ
Из схемы на рис. 10.9 следует, что
.
Проверим правильность сделанного предположения, для чего определим ток iD1 диода D1 и напряжение uD2 диода D2. Используя допущение о том, что uдиф = 0, получаем uD2 = –2 В и iD1 = 0,2 мА. Так как напряжение на диоде D2 отрицательное, а ток через диод D1 положителен, можно утверждать, что предположение было правильным.
Пусть теперь uвх = –1 В. Предположим, что диод D1 закрыт, а диод D2 открыт. Тогда получим эквивалентную схему, приведенную на рис. 10.10, из которой получаем
.
Рис. 10.10. Эквивалентная схема усилителя с обратной связью
Для проверки правильности сделанного предположения определим iD2:
.
Очевидно, что uD1 = 0. Полученные результаты позволяют утверждать, что предположение было правильным.