
- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электропроводности полупроводников
- •2.2.1. Собственная электропроводность
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технологии изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при приложении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев эдп
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Условное обозначение маломощных диодов
- •5.5. Конструкция штыревых силовых диодов
- •5.6. Лавинные диоды
- •5.7. Конструкция таблеточных диодов
- •5.8. Стабилитрон
- •5.9. Туннельный диод
- •5.10. Обращенный диод
- •5.11. Варикап
- •5.12. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема включения транзистора с общей базой
- •6.4. Схема включения транзистора с общим эмиттером
- •6.5. Схема включения транзистора с общим коллектором
- •6.6. Схемы включения транзистора как усилителя
- •6.7. Краткие характеристики схем включения транзистора. Области применения схем
- •6.7.1. Схема включения транзистора с общей базой
- •6.7.2. Схема включения транзистора с общим эмиттером
- •6.7.3. Схема включения транзистора с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Работа транзистора в ключевом режиме
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и системы обозначений (маркировка) транзисторов
- •6.14. Полевые транзисторы
- •6.14.1. Полевой транзистор с управляющим p-n-переходом
- •6.14.2. Вольт-амперные характеристики полевого транзистора
- •6.14.3. Основные параметры полевого транзистора
- •6.14.4. Полевые транзисторы с изолированным затвором
- •6.14.4.1. Мдп-транзисторы со встроенным каналом
- •6.14.4.2. Мдп-транзистор с индуцированным каналом
- •6.14.5. Достоинства и недостатки полевых транзисторов
- •6.15. Технологии изготовления транзисторов
- •6.16. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.17. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1 Назначение и классификация
- •7.2. Диодные и триодные тиристоры
- •7.3. Переходные процессы при включении и выключении тиристора
- •7.3.1. Переходные процессы при включении тиристора
- •7.3.2. Переходные процессы при выключении тиристора
- •7.4. Основные параметры тиристоров
- •7.5. Маркировка силовых тиристоров
- •7.6. Лавинные тиристоры
- •7.7. Симметричные тиристоры (симисторы)
- •7.8. Полностью управляемые тиристоры
- •7.9. Специальные типы тиристоров
- •7.9.1. Оптотиристоры
- •7.9.2. Тиристоры с улучшенными динамическими свойствами
- •7.9.2.1. Тиристоры тд (динамические)
- •7.9.2.2. Тиристоры тб (быстродействующие)
- •7.9.2.3. Тиристоры тч (частотные)
- •7.9.3. Тиристор, проводящий в обратном направлении (асимметричный)
- •7.9.4. Тиристор с обратной проводимостью (тиристор-диод)
- •7.9.5. Комбинированно-выключаемый тиристор (квк)
- •7.9.6. Полевой тиристор
- •7.10. Конструкции тиристоров
- •8. Групповое соединение полупроводниковых приборов
- •8.1. Неравномерности распределения нагрузки при групповом соединении
- •8.2. Параллельное соединение полупроводниковых приборов
- •8.3. Последовательное соединение полупроводниковых приборов
- •8.4. Параллельно-последовательное соединение полупроводниковых приборов
- •9. Охлаждение силовых полупроводниковых приборов
- •9.1. Способы охлаждения полупроводниковых приборов
- •9.2. Воздушное естественное и принудительное охлаждение
- •9.3. Испарительное охлаждение с промежуточным теплоносителем
- •9.4. Сравнение систем охлаждения
8.3. Последовательное соединение полупроводниковых приборов
Применение последовательного соединения приборов эффективно, если успешно решается задача равномерного деления обратного и прямого (для тиристоров и транзисторов) напряжений в статическом и динамическом режимах. Из-за разброса значений обратных токов и токов утечки, значений прямого напряжения в проводящем состоянии, емкостей p-n-переходов, времени задержки включения и времени выключения отдельных приборов это условие не выполняется. Поэтому при последовательном соединении принимают меры, обеспечивающие равномерное деление напряжения.
Для выравнивания напряжения применяют подбор приборов одного класса с близкими значениями обратных токов и токов утечки или устанавливают специальные делители и схемы управления тиристорами и транзисторами.
В качестве выравнивающих устройств используют (рис. 8.3): в статических режимах – активные делители R (рис. 8.3, а), в переходных режимах – активно-емкостные делители (RС-цепи) (рис. 8.3, б), емкостные делители С, комбинированные делители с диодами (RCD-цепи) (рис. 8.3, в).
а б в
Рис 8.3. Схемы цепей, выравнивающих напряжение в статическом
и динамическом режимах при последовательном соединении
полупроводниковых приборов
Применение активных делителей R сопровождается потерями энергии, значение которой увеличивается с уменьшением сопротивления резисторов. Поэтому стремятся установить резисторы с максимально возможным сопротивлением, при котором разброс напряжений не превышает допустимых границ. В последовательной цепи самое большое напряжение воспринимает прибор, обладающий наибольшим внутренним сопротивлением. Его обратный ток или ток утечки наименьший.
В случае применения тиристоров последовательно с конденсаторами включается низкоомный (примерно несколько десятков ом) резистор (рис. 8.3, б). Резистор служит для ограничения тока разряда конденсатора через включившийся тиристор. Для тиристоров и транзисторов используется RCD-цепь (рис. 8.3, в), обеспечивающая равномерное деление обратного напряжения как RС-цепь, а прямого – как емкостный делитель. Такая цепь, кроме функций делителя, обеспечивает снижение скорости приложения прямого напряжения duD/dt.
8.4. Параллельно-последовательное соединение полупроводниковых приборов
Такое соединение применяется в мощных высоковольтных полупроводниковых преобразовательных аппаратах. Возможны соединения приборов двумя различными способами: параллельное соединение а самостоятельных ветвей, каждая из которых содержит s последовательных приборов (рис. 8.4, а) и последовательное соединение s самостоятельных рядов, каждый из которых состоит из а параллельных приборов (рис. 8.4, 6).
а б
Рис 8.4. Схемы последовательно-параллельного соединения
полупроводниковых диодов
Первый способ основан на классической схеме построения последовательной цепи с устройствами принудительного деления напряжения для каждой из параллельных ветвей. Ветви могут быть включены параллельно без дополнительных устройств деления тока, если при s > 2 разброс по результирующему прямому напряжению всех ветвей в допустимых пределах. Такой подбор приборов не представляет сложности. Этот способ отличается многоэлементностью устройств деления напряжения.
Второй способ основан на классической схеме соединения приборов с устройствами деления тока (индуктивные делители ИД) для каждого из последовательных рядов. Ряды между собой соединяются последовательно с использованием общих на каждый ряд устройств принудительного деления напряжения. В этом способе устройства деления тока громоздки.
В реальных схемах преобразователей предпочтительна схема группового соединения полупроводниковых приборов (рис. 8.5). В этой схеме ветви преобразовательных диодов объединены между собой низкоомными резисторами связи R сопротивлением 0,5-0,8 Ом. При таком соединении допустимы применение общих для каждого ряда устройств деления напряжения и отказ от устройств деления тока благодаря выравниванию прямого напряжения при числе рядов более двух. Групповое соединение в данной схеме конструктивно не сложно и обеспечивает достаточно полное использование приборов по току и по напряжению.
Рис 8.5. Схема группового соединения полупроводниковых диодов