
- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электропроводности полупроводников
- •2.2.1. Собственная электропроводность
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технологии изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при приложении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев эдп
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Условное обозначение маломощных диодов
- •5.5. Конструкция штыревых силовых диодов
- •5.6. Лавинные диоды
- •5.7. Конструкция таблеточных диодов
- •5.8. Стабилитрон
- •5.9. Туннельный диод
- •5.10. Обращенный диод
- •5.11. Варикап
- •5.12. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема включения транзистора с общей базой
- •6.4. Схема включения транзистора с общим эмиттером
- •6.5. Схема включения транзистора с общим коллектором
- •6.6. Схемы включения транзистора как усилителя
- •6.7. Краткие характеристики схем включения транзистора. Области применения схем
- •6.7.1. Схема включения транзистора с общей базой
- •6.7.2. Схема включения транзистора с общим эмиттером
- •6.7.3. Схема включения транзистора с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Работа транзистора в ключевом режиме
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и системы обозначений (маркировка) транзисторов
- •6.14. Полевые транзисторы
- •6.14.1. Полевой транзистор с управляющим p-n-переходом
- •6.14.2. Вольт-амперные характеристики полевого транзистора
- •6.14.3. Основные параметры полевого транзистора
- •6.14.4. Полевые транзисторы с изолированным затвором
- •6.14.4.1. Мдп-транзисторы со встроенным каналом
- •6.14.4.2. Мдп-транзистор с индуцированным каналом
- •6.14.5. Достоинства и недостатки полевых транзисторов
- •6.15. Технологии изготовления транзисторов
- •6.16. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.17. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1 Назначение и классификация
- •7.2. Диодные и триодные тиристоры
- •7.3. Переходные процессы при включении и выключении тиристора
- •7.3.1. Переходные процессы при включении тиристора
- •7.3.2. Переходные процессы при выключении тиристора
- •7.4. Основные параметры тиристоров
- •7.5. Маркировка силовых тиристоров
- •7.6. Лавинные тиристоры
- •7.7. Симметричные тиристоры (симисторы)
- •7.8. Полностью управляемые тиристоры
- •7.9. Специальные типы тиристоров
- •7.9.1. Оптотиристоры
- •7.9.2. Тиристоры с улучшенными динамическими свойствами
- •7.9.2.1. Тиристоры тд (динамические)
- •7.9.2.2. Тиристоры тб (быстродействующие)
- •7.9.2.3. Тиристоры тч (частотные)
- •7.9.3. Тиристор, проводящий в обратном направлении (асимметричный)
- •7.9.4. Тиристор с обратной проводимостью (тиристор-диод)
- •7.9.5. Комбинированно-выключаемый тиристор (квк)
- •7.9.6. Полевой тиристор
- •7.10. Конструкции тиристоров
- •8. Групповое соединение полупроводниковых приборов
- •8.1. Неравномерности распределения нагрузки при групповом соединении
- •8.2. Параллельное соединение полупроводниковых приборов
- •8.3. Последовательное соединение полупроводниковых приборов
- •8.4. Параллельно-последовательное соединение полупроводниковых приборов
- •9. Охлаждение силовых полупроводниковых приборов
- •9.1. Способы охлаждения полупроводниковых приборов
- •9.2. Воздушное естественное и принудительное охлаждение
- •9.3. Испарительное охлаждение с промежуточным теплоносителем
- •9.4. Сравнение систем охлаждения
6.10. Малосигнальные и собственные параметры транзисторов
Для расчета электрических цепей с транзисторами необходимо учитывать параметры транзисторов.
В настоящее время получил распространение метод расчета параметров транзистора при замене его линейным четырехполюсником. Но транзистор нелинейный элемент. Поэтому замена его линейным четырехполюсником (рис. 6.24) справедлива лишь для области малых сигналов, когда участки характеристик, связывающие напряжения и токи, малы и их нелинейностью можно пренебречь.
Режимом малого сигнала называется такой режим, при котором изменение входного сигнала на 50 % вызывает изменение выходного сигнала не более, чем на 10 % от его предыдущего значения.
Рис. 6.24. Схема линейного четырехполюсника
Для транзистора, как четырехполюсника, в качестве независимых переменных обычно принимают приращения I1 и U2, а приращения U1 и I2 выражают через так называемые h-параметры транзистора:
(6.18)
I2 = h21 I1 + h22 U2.
Значение h-параметров в пределах линейных частей характеристик соответствует частным производным при равенстве нулю второго слагаемого в правой части уравнения.
К h-параметрам относятся следующие:
h11 – входное сопротивление транзистора при короткозамкнутой выходной цепи
[Ом];
(6.19)
h12 – коэффициент обратной связи по напряжению при разомкнутой входной цепи
;
(6.20)
h21 – коэффициент усиления по току при короткозамкнутой выходной цепи
;
(6.21)
h22 – выходная проводимость при разомкнутой входной цепи
.
(6.22)
В
зависимости от схемы включения
;
.
Для определения h-параметров на входе схемы осуществляют режим холостого хода, а на выходе – режим короткого замыкания. Оба режима создаются по переменной составляющей тока или напряжения. Это должно быть сделано так, чтобы изменение режима работы транзистора по переменной составляющей не отражалось на выбранном и установленном его режиме по постоянной составляющей. Для создания режима короткого замыкания по переменной составляющей между двумя выходными электродами включают конденсатор большой емкости, а для режима холостого хода на входе включают реактор с большой индуктивностью или параллельный колебательный контур.
Схема для измерения h-параметров приведена на рис. 6.25.
Рис.
6.25. Схема для измерения h-параметров
h-параметры зависят от выбранной рабочей точки, температуры и схемы включения транзистора по переменному току.
Транзистор можно описать и другими параметрами: если в качестве независимых переменных принять I1 и I2, а зависимых – U1 и U2, то это система z-параметров (r-параметров). Если в качестве независимых переменных принимаются U1 и U2, а в качестве зависимых – I1 и I2, то это система y-параметров. Наибольшее распространение получила система h-параметров. Системы z- и y-параметров применяются редко вследствие затруднений, связанных с измерением этих параметров.
Если нельзя заменить нелинейную характеристику линейной в области сильных сигналов, то транзистор описывают собственными параметрами, которые определяются по статическим ВАХ. Но значения собственных параметров пригодны для расчетов в диапазоне низких частот, где эти параметры являются активными и не зависят от частоты.