
- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электропроводности полупроводников
- •2.2.1. Собственная электропроводность
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технологии изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при приложении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев эдп
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Условное обозначение маломощных диодов
- •5.5. Конструкция штыревых силовых диодов
- •5.6. Лавинные диоды
- •5.7. Конструкция таблеточных диодов
- •5.8. Стабилитрон
- •5.9. Туннельный диод
- •5.10. Обращенный диод
- •5.11. Варикап
- •5.12. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема включения транзистора с общей базой
- •6.4. Схема включения транзистора с общим эмиттером
- •6.5. Схема включения транзистора с общим коллектором
- •6.6. Схемы включения транзистора как усилителя
- •6.7. Краткие характеристики схем включения транзистора. Области применения схем
- •6.7.1. Схема включения транзистора с общей базой
- •6.7.2. Схема включения транзистора с общим эмиттером
- •6.7.3. Схема включения транзистора с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Работа транзистора в ключевом режиме
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и системы обозначений (маркировка) транзисторов
- •6.14. Полевые транзисторы
- •6.14.1. Полевой транзистор с управляющим p-n-переходом
- •6.14.2. Вольт-амперные характеристики полевого транзистора
- •6.14.3. Основные параметры полевого транзистора
- •6.14.4. Полевые транзисторы с изолированным затвором
- •6.14.4.1. Мдп-транзисторы со встроенным каналом
- •6.14.4.2. Мдп-транзистор с индуцированным каналом
- •6.14.5. Достоинства и недостатки полевых транзисторов
- •6.15. Технологии изготовления транзисторов
- •6.16. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.17. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1 Назначение и классификация
- •7.2. Диодные и триодные тиристоры
- •7.3. Переходные процессы при включении и выключении тиристора
- •7.3.1. Переходные процессы при включении тиристора
- •7.3.2. Переходные процессы при выключении тиристора
- •7.4. Основные параметры тиристоров
- •7.5. Маркировка силовых тиристоров
- •7.6. Лавинные тиристоры
- •7.7. Симметричные тиристоры (симисторы)
- •7.8. Полностью управляемые тиристоры
- •7.9. Специальные типы тиристоров
- •7.9.1. Оптотиристоры
- •7.9.2. Тиристоры с улучшенными динамическими свойствами
- •7.9.2.1. Тиристоры тд (динамические)
- •7.9.2.2. Тиристоры тб (быстродействующие)
- •7.9.2.3. Тиристоры тч (частотные)
- •7.9.3. Тиристор, проводящий в обратном направлении (асимметричный)
- •7.9.4. Тиристор с обратной проводимостью (тиристор-диод)
- •7.9.5. Комбинированно-выключаемый тиристор (квк)
- •7.9.6. Полевой тиристор
- •7.10. Конструкции тиристоров
- •8. Групповое соединение полупроводниковых приборов
- •8.1. Неравномерности распределения нагрузки при групповом соединении
- •8.2. Параллельное соединение полупроводниковых приборов
- •8.3. Последовательное соединение полупроводниковых приборов
- •8.4. Параллельно-последовательное соединение полупроводниковых приборов
- •9. Охлаждение силовых полупроводниковых приборов
- •9.1. Способы охлаждения полупроводниковых приборов
- •9.2. Воздушное естественное и принудительное охлаждение
- •9.3. Испарительное охлаждение с промежуточным теплоносителем
- •9.4. Сравнение систем охлаждения
6.7. Краткие характеристики схем включения транзистора. Области применения схем
6.7.1. Схема включения транзистора с общей базой
Транзистор не обеспечивает усиления по току, но имеет усиление по напряжению и по мощности. Входное сопротивление Rвх – мало, а выходное сопротивление Rвых – большое. Это создает затруднения при согласовании входного сопротивления с сопротивлением генератора сигналов, а так же при реализации мощности в цепи нагрузки. Схема с общей базой используется редко. Основная область применения – высококачественные усилители, имеющие малые искажения формы сигналов, низкие уровни шумов или работающие на высоких частотах.
6.7.2. Схема включения транзистора с общим эмиттером
Является основной (наиболее универсальной) схемой включения. Транзистор обеспечивает значительное усиление по напряжению, по току и по мощности. Входное сопротивление Rвх в схеме много больше, чем в схеме с общей базой, что облегчает его согласование с сопротивлением генератора сигналов. Это является достоинством схемы. Выходное сопротивление Rвых в схеме с общим эмиттером меньше, чем в схеме с общей базой, что также является достоинством схемы. Однако оно достаточно велико, что позволяет включать нагрузку, сопротивление которой намного больше входного сопротивления. Это, в свою очередь, позволяет получать достаточно высокое усиление напряжения сигнала.
6.7.3. Схема включения транзистора с общим коллектором
Коэффициент ki в схеме с общим коллектором несколько больше, чем в схеме с общим эмиттером. Усиления по напряжению схема с общим коллектором не дает, входное сопротивление Rвх – велико, выходное сопротивление Rвых – мало, что является основным полезным свойством схемы. На основе схемы с общим коллектором строятся эмиттерные повторители, обеспечивающие согласование источников сигналов с большим внутренним сопротивлением с низкоомной нагрузкой.
6.8. Режимы работы транзистора
На семействе выходных характеристик можно выделить три области, соответствующие трем режимам работы транзистора (рис. 6.18).
Рис. 6.18. Семейство выходных характеристик транзистора
Область I – активная область или активный режим (режим малого сигнала).
Ток на выходе зависит от тока на входе Iвых = f (Iвх) = var. Эмиттерный переход П1 смещен в прямом направлении, а коллекторный П2 – в обратном.
Активная область используется при работе транзистора при усилении и генерировании монотонно изменяющихся сигналов с малой амплитудой.
Область II – область (режим) отсечки.
Оба перехода закрыты. Сигнал на входе отсутствует. Биполярный транзистор усилительными свойствами не обладает. Для обеспечения режима отсечки необходимо на эмиттерный переход подать запирающее напряжение (при запертом коллекторном переходе). Через оба перехода протекает ток IКО.
За счет модуляции базы переход П1 смещается в прямом направлении. Для обеспечения его надежного запирания предусмотрена цепь смещения для получения положительного потенциала базы относительно эмиттера (для транзисторов p-n-p-типа).
Область III – область насыщения или режим насыщения.
Открыты оба перехода, через транзистор протекает прямой ток, ограничиваемый внешним сопротивлением.
В преобразовательных устройствах биполярные транзисторы используются в качестве ключевых элементов, то есть они работают в режиме переключения из области насыщения (соответствует включенному состоянию) в область отсечки (соответствует выключенному состоянию), кратковременно находясь в активном режиме в процессе переключения. Режим ключа – сочетание режимов отсечки и насыщения, то есть режим большого сигнала.
Режим работы биполярного транзистора с включенной нагрузкой в выходной цепи называется режимом нагрузки. При работе биполярного транзистора в этом режиме в его входную цепь подают переменный (гармонический или импульсный) сигнал, а в выходную цепь включают нагрузочный резистор, обмотку трансформатора или реле. Так как процесс работы транзистора связан с изменением его состояния во времени, нагрузочный режим можно считать квазистатическим. Нагрузочные характеристики можно получить экспериментально или построить графически по статическим характеристикам.
Схема включения биполярного транзистора с нагрузкой в коллекторной цепи, входным переменным сигналом и источниками питания в коллекторной (выходной) цепи и цепи смещения на входе называется усилительным каскадом (рис. 6.19).
На выходные характеристики (рис. 6.20) нанесены ограничения по максимальным значениям тока коллектора Iк макс, напряжения коллектор-эмиттер UКЭ0 и мощности, рассеиваемой на коллекторе Pк макс = UКЭ Iк = const.
Нагрузочные характеристики строятся в рабочей области, ограниченной максимальными значениями тока, напряжения и мощности. Для выходной цепи на основании второго закона Кирхгофа можно записать уравнение равновесия
UКЭ = Ек – IкRк. (6.15)
Из уравнения (6.14) следует, что с увеличением тока коллектора Iк, напряжение UКЭ уменьшается, так как увеличивается падение напряжения на сопротивлении нагрузки URк = IкRк. Таким образом, изменение напряжения и тока входной цепи приводит к одновременному изменению не только выходного тока, но и выходного напряжения UКЭ.
Рис. 6.19. Схема усилительного каскада на биполярном транзисторе по схеме с общим эмиттером
Рис. 6.20. Семейство выходных характеристик
Уравнение (6.14) является уравнением прямой, которую можно построить на выходных характеристиках (рис. 6.20) по двум точкам, соответствующим: холостому ходу (А) (Iк = 0 и UКЭ = EК) и короткому замыканию (Б) (Iк = EК / Rк и UКЭ = 0). Прямая АВ называется нагрузочной прямой. Она имеет рабочий участок А’В’. По нагрузочной прямой (рис. 6.20) строится входная нагрузочная характеристика (рис. 6.21) по соответствующим токам базы и напряжениям UКЭ (а, О, б).
По точкам пересечения нагрузочной прямой со статическими выходными характеристиками можно найти параметры работы транзистора в режиме нагрузки при Uкэ=const, Rк= const и разных токах базы.
За входную нагрузочную характеристику принимается одна из статических (обычно для UКЭ= – 5 В). Для полного воспроизведения на выходе усиливаемого входного сигнала источника тока iвх с помощью источника смещения постоянного тока EБЭ, задают точку покоя (рабочую точку) усилительного каскада (точка О на рис. 6.21), которой соответствует определенный постоянный ток покоя на входе Iб(0) и на выходе Iк(0) при отсутствии переменного сигнала.
Выбором значения EБЭ можно задать необходимый режим (класс) усиления.
Рис. 6.21. Семейство входных характеристик