
- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электропроводности полупроводников
- •2.2.1. Собственная электропроводность
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технологии изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при приложении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев эдп
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Условное обозначение маломощных диодов
- •5.5. Конструкция штыревых силовых диодов
- •5.6. Лавинные диоды
- •5.7. Конструкция таблеточных диодов
- •5.8. Стабилитрон
- •5.9. Туннельный диод
- •5.10. Обращенный диод
- •5.11. Варикап
- •5.12. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема включения транзистора с общей базой
- •6.4. Схема включения транзистора с общим эмиттером
- •6.5. Схема включения транзистора с общим коллектором
- •6.6. Схемы включения транзистора как усилителя
- •6.7. Краткие характеристики схем включения транзистора. Области применения схем
- •6.7.1. Схема включения транзистора с общей базой
- •6.7.2. Схема включения транзистора с общим эмиттером
- •6.7.3. Схема включения транзистора с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Работа транзистора в ключевом режиме
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и системы обозначений (маркировка) транзисторов
- •6.14. Полевые транзисторы
- •6.14.1. Полевой транзистор с управляющим p-n-переходом
- •6.14.2. Вольт-амперные характеристики полевого транзистора
- •6.14.3. Основные параметры полевого транзистора
- •6.14.4. Полевые транзисторы с изолированным затвором
- •6.14.4.1. Мдп-транзисторы со встроенным каналом
- •6.14.4.2. Мдп-транзистор с индуцированным каналом
- •6.14.5. Достоинства и недостатки полевых транзисторов
- •6.15. Технологии изготовления транзисторов
- •6.16. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.17. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1 Назначение и классификация
- •7.2. Диодные и триодные тиристоры
- •7.3. Переходные процессы при включении и выключении тиристора
- •7.3.1. Переходные процессы при включении тиристора
- •7.3.2. Переходные процессы при выключении тиристора
- •7.4. Основные параметры тиристоров
- •7.5. Маркировка силовых тиристоров
- •7.6. Лавинные тиристоры
- •7.7. Симметричные тиристоры (симисторы)
- •7.8. Полностью управляемые тиристоры
- •7.9. Специальные типы тиристоров
- •7.9.1. Оптотиристоры
- •7.9.2. Тиристоры с улучшенными динамическими свойствами
- •7.9.2.1. Тиристоры тд (динамические)
- •7.9.2.2. Тиристоры тб (быстродействующие)
- •7.9.2.3. Тиристоры тч (частотные)
- •7.9.3. Тиристор, проводящий в обратном направлении (асимметричный)
- •7.9.4. Тиристор с обратной проводимостью (тиристор-диод)
- •7.9.5. Комбинированно-выключаемый тиристор (квк)
- •7.9.6. Полевой тиристор
- •7.10. Конструкции тиристоров
- •8. Групповое соединение полупроводниковых приборов
- •8.1. Неравномерности распределения нагрузки при групповом соединении
- •8.2. Параллельное соединение полупроводниковых приборов
- •8.3. Последовательное соединение полупроводниковых приборов
- •8.4. Параллельно-последовательное соединение полупроводниковых приборов
- •9. Охлаждение силовых полупроводниковых приборов
- •9.1. Способы охлаждения полупроводниковых приборов
- •9.2. Воздушное естественное и принудительное охлаждение
- •9.3. Испарительное охлаждение с промежуточным теплоносителем
- •9.4. Сравнение систем охлаждения
5.9. Туннельный диод
В электрических установках, работающих при высокой частоте, в устройствах автоматики и телемеханики, радиоаппаратуре, ЭВМ, применяют туннельные диоды (ТД).
Туннельные диоды предложены японским физиком Есаки (Эсаки) в 1958 г.
ТД представляет собой полупроводниковый прибор с p-n-переходом, образованным материалами с высокой концентрацией атомов примесей. Электропроводность таких полупроводников приближена к электропроводности металла. Условное обозначение туннельного диода и его вольтамперная характеристика приведены на рис. 5.8. Туннельные диоды изготавливаются из германия и арсенида галлия и обладают так называемой N-образной ВАХ.
а б
Рис. 5.8. Условное обозначение туннельного диода (а) и его
вольт-амперная характеристика (б)
Особенностями туннельных диодов являются:
малая толщина запорного слоя;
высокая напряженность электрического поля.
Эти особенности получены в результате использования сильно легированных полупроводниковых материалов (концентрация примесей составляет 1019-1020 атомов на см3). Такие полупроводники обладают очень малым удельным сопротивлением (в сотни или тысячи раз меньше, чем в обычных диодах) и называются вырожденными.
Если приложить к ЭДП обратное напряжение, то напряженность электрического поля в нем возрастет еще больше и оно окажется способным вырывать валентные электроны из кристаллической решетки полупроводника p-типа, отрывать их от атомов и перебрасывать через p-n-переход в полупроводник n-типа, где они становятся основными носителями электричества.
В отличие от обычного диода в ТД электроны перемещаются непосредственно из валентной зоны одного полупроводника в свободную зону другого. Энергия, которой они обладают, недостаточна для преодоления потенциального барьера p-n-перехода, и они проходят сквозь этот барьер под действием электрического поля высокой напряженности (более 105 В/см) по определенным каналам (туннелям). Такой механизм прохождения электрона через узкий p-n-переход называется туннельным эффектом.
Так как число электронов в валентных связях полупроводника так же велико, как и число свободных электронов в металле, то при включении туннельного диода в обратном направлении его ВАХ принимает вид металлического проводящего контакта (в ней отсутствуют участки запирания с малым обратным током).
Если к диоду приложить напряжение прямой полярности Uпр, то поле в ЭДП несколько ослабнет, но будет еще достаточным для создания туннельного эффекта. При большем увеличении Uпр туннельный эффект начинает исчезать, что приводит к появлению падающего участка аб на прямой ветви ВАХ с отрицательным сопротивлением (рис. 5.8, б).
При дальнейшем повышении Uпр туннельный эффект полностью исчезает и происходит обычный процесс прохождения тока через p-n-переход и ВАХ становится как у обычного диода.
Туннельный диод нельзя использовать для выпрямления переменного тока, так как он обладает высокой проводимостью при обратном включении. Его применяют для создания и усиления электрических колебаний. На участке аб (рис. 5.8, б) диод имеет отрицательное сопротивление, которое не вносит дополнительных потерь в электрическую цепь, а компенсирует потери энергии в других элементах за счет энергии источника питания. Поэтому если положительное сопротивление ослабляет электрические сигналы, то отрицательное может их усиливать.
Преимущества ТД как усилителя сигналов: малые размеры, способность работать в широком диапазоне температур и на очень высоких частотах (до 40000 МГц), высокая температурная стабильность и малое потребление энергии.
Основными параметрами ТД являются:
1) Un, In – напряжение и ток пика соответственно – параметры в точке а на ВАХ (рис. 5.8, б);
2)
Uв,
Iв
– напряжение и ток впадины – параметры
в точке б на ВАХ;
3) Unn – напряжение на второй восходящей части ВАХ, большее напряжения впадины, при котором ток равен пиковому – точка в на ВАХ;
4) отношение тока пика к току впадины In/Iв. Для выпускаемых диодов In = 0,1-1000 мА, In/Iв = 3-30.