
- •Геохимия городских ландшафтов
- •20. Геохимическая классификация химических элементов
- •21.1. Методологические аспекты геохимии городских ландшафтов
- •21.2. Техногенные геохимические процессы и системы на урбанизированных территориях
- •Техногенные процессы
- •Природно-техногенные процессы
- •Ориентировочная оценочная шкала опасности загрязнения почв по суммарному показателю [95]
- •21.3. Геохимическая классификация городских ландшафтов
- •Основные таксономические единицы геохимической систематики городов [106]
- •Геохимические разряды городов [104]
- •Основные таксономические единицы геохимической классификации городских элементарных ландшафтов [104]
- •Разделы городских ландшафтов [104]
- •21.4. Геохимическое картографирование городских ландшафтов
- •Методика ландшафтно-геохимического анализа города
- •21.5.1. Оценка природного геохимического фона
- •Содержание химических элементов в верхнем горизонте дерново-подзолистых почв национального парка «Нарочанский», мг/кг сух. В-ва [113]
- •21.5.2. Выявление и геохимический анализ источников техногенного воздействия
- •21. 5. 3. Геохимическая оценка состояния природных компонентов городских ландшафтов
- •Критерии качества воздуха, принятые в Республике Беларусь и рекомендованные воз (who–aqGs), мкг/м3 [119]
- •Гигиеническая оценка степени загрязнения атмосферного воздуха комплексом вредных химических веществ [115]
- •Классификация поверхностных вод по их качеству
- •Систематика почв и почвоподобных тел городов южнотаежной зоны Европейской территории России [138]
- •Ориентировочно допустимые концентрации валовых форм тяжелых металлов в различных типах почв, мг/кг
- •Содержание гумуса в почвах различных функциональных зон городов, % [153]
- •Среднее содержание свинца в почвах ландшафтов г. Минска [129]
- •21.5.4. Комплексная эколого-геохимическая оценка состояния городской среды. Оценка экологического риска
- •Индексы состояния природных компонентов [97]
- •Соотношение шкал степени загрязнения воздуха и относительного риска ингаляционного воздействия атмополлютантов [97]
- •21.6. Геохимическая трансформация природных компонентов в городах Беларуси
- •Содержание тяжелых металлов в различных породах древесных растений на территории г. Гомеля, мг/кг абс. Сух. В-ва
- •Содержание тяжелых металлов в органах растений в зоне влияния предприятий по производству хрустального стекла, мг/кг сух. В-ва
- •Содержание тяжелых металлов в землянике и грибах, мг/кг сырой продукции
- •Коэффициенты аномальности свинца и цинка в почвах городских территорий, используемых для выращивания растениеводческой продукции
- •Содержание тяжелых металлов в овощах и картофеле, мг/кг сырой массы
- •Накопление нитратов в растениеводческой продукции, выращенной на огородах в городах
- •21.7. Особенности геохимической трансформации природных компонентов пригородных ландшафтов
- •Содержание тяжелых металлов в субстрате различных отходов, мг / кг [91]
- •Содержание тяжелых металлов в осадках сточных вод, мг/кг [90]
- •Рекомендуемая литература Основная
- •Дополнительная
- •Список использованных источников
Основные таксономические единицы геохимической систематики городов [106]
Наименование единицы |
Критерии выделения |
Отряд |
ведущая роль техногенной миграции, искусственный рельеф, концентрация населения |
Разряд |
степень техногенного воздействия на население и городскую среду |
Группа |
группа природных геохимических ландшафтов |
Тип |
тип природного геохимического ландшафта |
Семейство |
особенности воздушной миграции продуктов техногенеза |
Класс |
класс водной миграции продуктов техногенеза |
Род |
геохимическая специализация литогенного субстрата |
Важным признаком систематизации городов является степень техногенного воздействия на население и городскую среду. Он учитывается на уровне таксономической единицы – геохимического разряда городов, который обозначается буквенно-числовым индексом (табл. 21.3) и оценивается в баллах. Степень техногенного воздействия определяется совокупно по показателю суммарной эмиссионной нагрузки выбросов на одного жителя в год (E) и показателям состояния компонентов городской среды: суммарного показателя загрязнения депонирующих сред (Zс) и пылевой нагрузки (Р), поскольку между интенсивностью техногенных выбросов, приходящихся на каждого жителя, и уровнями загрязнения снежного покрова и почв города нет прямой зависимости. Оценочная шкала по этому признаку эмпирическая, разработанная с учетом результатов эколого-геохимического обследования ряда городов.
По данным авторов классификации, в крупных городах с населением более 500 тыс. жителей показатель Е составляет 0,1-0,7 с максимальными значениями (>0,3) в городах с преобладанием химической и нефтехимической промышленности (Баку, Омск, Ярославль, Уфа, Тольятти) и тяжелым машиностроением (Челябинск, Тула). Для Москвы он составляет 0,12 т/чел. в год, Минска – 0,08. В малых и средних промышленных городах Е изменяется от 0,2-0,3 до более 10. Среди наиболее загрязненных явно преобладают города с черной и цветной металлургией. По величине коэффициента Е введены градации городов, обозначенные буквенными индексами (табл. 21.3).
Таблица 21.3
Геохимические разряды городов [104]
Уровни загрязнения (Zc), пылевая нагрузка (Р) |
Количество выбросов на 1 жителя (т/чел. в год)
|
|||||||||||||
Е<0,3 |
Е=0,3-1 |
Е = 1-2 |
E=2-3 |
Е = 3-5 |
||||||||||
1.Низкий (Zc =16, Р=200) |
L1 |
1 |
M1 |
2 |
N1 |
3 |
P1 |
4 |
R1 |
5 |
||||
2.Средний умеренно опасный (Zc: почвы 16-32, снега 64-128, Р=250-450) |
L2 |
6 |
M2 |
7 |
N2 |
8 |
P2 |
9 |
R2 |
10 |
||||
3.Высокий опасный (Zc: почвы 32—128, снега 128-256, Р=450-800) |
L3 |
11 |
M3 |
12 |
N3 |
13 |
P3 |
14 |
R3 |
15 |
||||
4.Очень высокий, чрезвычайно опасный (Zc: почвы > 128, снега > 256; Р>800) |
L4 |
16 |
M4 |
17 |
N4 |
18 |
P4 |
19 |
R4 |
20 |
Zc - суммарный показатель загрязнения, Р - величина пылевой нагрузки, кг/км2 в сутки, числа в клетках – баллы, характеризующие опасность загрязнения
Важной эколого-геохимической характеристикой городов является структура загрязнения. Она может быть основанием для выделения подразрядов городов и учитываться отдельно для макрополлютантов (оксиды и диоксиды азота, серы, углерода, пыль), на долю которых приходится более 90-95% от общего объема выбросов, и микрополлютантов, объемы выбросов которых малы, но велики уровни аномальности и токсичности (тяжелые металлы, хлорорганические соединения, углеводороды и др.). Так, среди крупных городов мира выделяются "серные" города - Тбилиси, Тегеран, Милан, Сеул, Новополоцк и др.; "азотные" - Донецк, Ташкент, Тель-Авив, Одесса, Москва и др.; "углеродные" - Париж, Сантьяго, Ереван, Мадрид, Минск и др.
Подобная геохимическая специализация существует и для микропримесей вредных веществ, особенно в депонирующих средах - почвах, растениях и донных отложениях. Наиболее высокие уровни концентрации в загрязненных почвах городов СНГ характерны для кадмия, свинца, цинка и меди, а наиболее контрастные локальные техногенные аномалии образуют никель, кадмий, цинк, меда и ртуть. Их максимальные содержания достигают десятков и даже сотен фоновых конценграций (кадмий, свинец). При этом каждый промышленный город имеет свою геохимическую специализацию. Наряду с "серными" и "азотными" можно выделять "медные" и другие города, отображая геохимическую специализацию и уровень их загрязнения на эколого-геохимических картах в виде формул из символов приоритетных загрязнителей, например, коэффициенты аномальности в атмосферных выпадениях, снеге (числитель) и почвах (знаменатель), если необходимо и растениях (рядом с дробью), а также суммарные показатели загрязнения (перед дробью).
Далее систематика городов предусматривает их детальную природную характеристику. Группы и типы городов выделяются по группам и типам природных ландшафтов, в пределах которых сформировались урбанизированные территории. Таксономический признак, учитываемый на этом уровне - зональные геохимические особенности ландшафтов городов. Семейства городов определяются особенностями воздушной миграции продуктов техногенеза, положением города в бассейнах атмосферного переноса и региональными особенностями загрязнения и самоочищения атмосферы. Важное значение имеет соотношение сильных и штилевых ветров, наличие инверсий, определяющих появление смога, рельеф и т.д. Многие из этих факторов отражены в геоморфологическом положении города. Поэтому выделяются семейства: равнинное (Москва, Минск), горно-котловинное и горно-долинное (Улан-Батор, Тбилиси), предгорное (Алма-Ата), приморское (Санкт-Петербург) и др. Среди крупных промышленных городов мира к семейству приморских относятся Копенгаген, Токио, Нью-Йорк, Ванкувер, Мельбурн, Торонто. Известно, что приморские города характеризуются высокой самоочищаемостью атмосферного воздуха от загрязнителей и отличаются наименьшими средними концентрациями взвешенных в воздухе частиц. И, наоборот, горно-котловинные и предгорные города при прочих равных факторах имеют самые высокие показатели загрязнения.
Классы городов выделяются по условиям водной миграции продуктов техногенеза и положению в каскадных ландшафтно-геохимических системах. Как и в природных ландшафтах, выделяются глеевые, кальциевые и прочие классы, отличающиеся интенсивностью миграции и характером разложения техногенных веществ. Для города в целом целесообразно указывать пространственную структуру преобладающих по площади классов в автономных и подчиненных позициях, что определяет особенности концентрации загрязняющих веществ на геохимических барьерах. По существу это классы наиболее типичных почвенно-геохимических катен.
Род городов определяется геохимической специализацией литогенного субстрата. Все города по уровням содержания токсичных элементов и соединений в коренных, почвообразующих породах и почвах можно разделить на три рода: I - фоновые ландшафты с околокларковыми содержаниями большинства элементов (многие города на четвертичных рыхлых отложениях); II – субаномалъные ландшафты с повышенными содержаниями отдельных элементов в литогенной основе; III - города с природно-аномальными литогеохимическими условиями, т.е. построенные на участках рудных, угольных, нефтяных и газовых месторождений, где высокие природно-обусловленные концентрации токсичных элементов создают достаточно высокий уровень загрязнения городского ландшафта. Примерами последних могут служить города на хром-никелевом месторождении (Моа на Кубе) и в нефтеносных районах (Баку) и др. Добыча и переработка полезных ископаемых в этих случаях вносит дополнительную техногенную нагрузку, что увеличивает опасность экологической ситуации.
Геохимическая классификация городских ландшафтов. В географии существует несколько подходов к созданию классификации городских ландшафтов: 1) комплексный подход, основанный на выделении внутри города территорий с близкими результатами взаимодействия природных и техногенных факторов ландшафтообразования, близкой степенью нарушенности природных процессов и т.п.; 2) геоструктурный подход, в основу которого положен учет сочетания природных и антропогенных компонентов в ландшафтах; 3) экологический подход, основанный на зонировании городов по уровню антропогенного воздействия. Геохимические принципы классификации городских ландшафтов в известной степени сочетают все эти подходы и учитывают одну из важнейших сторон техногенного воздействия – факт загрязнения городской среды. Основания и критерии выделения таксонов на разных уровнях классификации отличаются: на верхних уровнях в качестве оснований используются антропогенные (социально-производственные) факторы, а на нижних - природно-обусловленные, частично измененные техногенезом (табл. 21.4).
Таблица 21.4