
- •1. Понятие об экологии. Предмет и задачи применительно к деятельности инженеров машиностроительных и проектно-конструкторских предприятий.
- •2. Основные причины загрязнения. Качество среды, критерии качества. Ксенобиотики. Некоторые виды классификации экологии. Законы экологии.
- •3. Понятие о биосфере и ее место среди других геосфер.
- •4. Озонный щит Земли и физико-химические процессы получения озона.
- •5. Эволюция биосферы. Понятие о ноосфере. Биогенез, ноогенез, ноогенетика. Понятие об автотрофности человечества.
- •6. Жизнь как термодинамический процесс. Биотехносфера. Понятие о негаэнтропии.
- •7. Экологические факторы окружающей среды – абиотические, биотические.
- •8. Толерантность организма. Экологическая ниша.
- •9. Адаптация живых организмов. Виды адаптации.
- •10. Экологическая валентность или пластичность различных видов. Ареал вида, его связь с экологической валентностью.
- •11. Стемотормный, эвритермный, пессимальный виды устойчивости живых организмов.
- •12. Понятие о популяциях. Панмиксия.
- •13. Расчет численности популяций.
- •14. Понятие о бгц. Сопоставление с понятием «экосисема».
- •15. Схема биогеоценоза. Понятие об экотопе и биоценозе. Антропогенное влияние на бгц деятельности человека.
- •16. Антропогенная экосистема и условия ее существования. Примеры.
- •17. Состояние подвижно-стабильного равновесия экосистемы. Гомеостаз. Сукцессии в экосистеме.
- •18. Понятие о фотосинтезе растений. Механизм процессов.
- •19. Понятие о хемосинтезе. Уравнения химических реакций. Связь его с автотрофностью.
- •20. Круговорот веществ и энергии в биосфере. Понятие о трофической цепи. Составные компоненты трофической цепи (продуценты, консументы, редуценты).
- •21. Упрощенная трофическая цепь в бгц и объяснение ее функционирования.
- •22. Энергетика и продуктивность в бгц. Первичная продуктивность, чистая первичная продуктивность, вторичная продуктивность.
- •23. Связь между продуктивностью и расходами на дыхание для автотрофной и гетеротрофной сукцессий. Климаксные системы.
- •24. Понятие об эвфотической зоне.
- •25. Два вида круговорота вещества в биосфере: большой – экологический и малый – биотический.
- •26. Понятие биогеохимического цикла. Примеры.
- •27. Круговорот углерода в природе.
- •28. Круговорот азота в природе.
- •29. Круговорот фосфора в природе.
- •30. Механизм действия обратных связей при реализации гомеостаза. Понятие о гомеостатическом плато.
- •31. Антропогенные помехи и их влияние на гомеостаз.
- •32. Понятие о загрязнении окружающей среды. Классификация загрязнений.
- •33. Состав атмосферы и виды загрязнений воздуха.
- •34. Роль co2 в прозрачности воздуха и изменение альбедо при действии промышленных выбросов.
- •35. Особенности воздействия загрязнителей на гидросферу. Примеры загрязнения природных вод.
- •36. Загрязнения литосферы. Источники загрязнения.
- •37. Загрязнение атмосферы, гидросферы и литосферы. Сравнительный анализ.
- •38. ГосТы для определения концентрации веществ, не содержащихся в постоянном составе атмосферы. Обув, одк, вдк.
- •39. Понятие о пдк (пдк рабочей зоны и пдк атмосферного воздуха), их отличия.
- •40. Пдк максимально разовые и пдк среднесуточные.
- •41. Пдк экспериментальные и пдк расчетные. Методы их определения.
- •42. Понятие о пдв, всв. Эффект суммации.
- •43. Предельно допустимые нагрузки на водный объект, чем он определяется. Понятие о пдэн.
- •45. Лимитирующий показатель вредности.
- •47. Понятие о хпк и бпк, для чего они нужны.
- •48. Производственные ограничения на сброс сточных вод.
- •49. Особенности процессов, протекающих в почвах. Понятие о Гумусе. Понятие о док. Для чего он вводится.
- •50. Фоновый показатель качества природной среды и ее организации.
- •51. Понятие о мониторинге, цели и задачи.
- •52. Система глобального мониторинга и его организация.
- •53. Методы экологической индикации загрязнений окружающей среды.
- •54. Основные характеристики качества воды. Подробнее о водородном показателе воды. Значение рН в природных водах. Влияние на рН содержания ионов нсо3-.
- •55. Характеристики качества воды: электропроводность и окислительно-восстановительный потенциал.
- •56. Характеристики качества воды: содержание растворенного кислорода; общее содержание в воде органических веществ.
- •57. Гравиметрические и титриметрические методы анализа сточных вод и их виды.
- •58. Фотометрические методы анализа сточных вод. Потенциометрия и потенциометрическое титрование. Вольт амперометрические методы.
- •59. Методы очистки сточных вод: механические, физико-химические: фильтрация, адсорбционный метод, обратный осмос.
- •60. Методы очистки сточных вод: коагуляция, ионообменный метод, радиационно-химический метод.
- •61. Электрохимические методы очистки сточных вод: электрофлотация, электрокоагуляция.
- •62. Химические методы очистки сточных вод. Биологическая очистка. Виды сточных вод.
- •63. Очистка сточных вод от нефтепродуктов и красителей.
- •64. Общие экологические проблемы производства полупроводниковых приборов и микроэлектроники.
- •65. Способы отделения твердой фазы: седиментация, фильтрация (различные фильтры), центрифугирование.
- •66. Методы отделения твердых отходов из сточных вод: флотация и электрофлотация.
- •67. Методы отделения твердых отходов из сточных вод: электрофорез и электроосмос, диализ.
- •68. Классификация методов и аппаратов для обезвреживания газовых выбросов.
- •69. Источники газовых выбросов в литейном производстве, сварке, прокатке, электрохимической и механической обработке металлов.
- •70. Токсическое воздействие газовых выбросов на человека.
- •71. Методы очистки газов от пыли и принцип действия пылеулавливающих аппаратов.
- •72. Чем отличаются механические, гидравлические, фильтрационные очистные аппараты.
- •73.Суть адсорбционных методов очистки газов. 5 типов адсорбентов.
- •74.Суть абсорбционных методов очистки газов. Абсорбция физическая и химическая.
- •75. Каталитические методы очистки газов.
- •76. Приборы для контроля пыли в промышленных цехах.
- •77. Приборы для контроля газов и паров в промышленных цехах.
28. Круговорот азота в природе.
При гниении органических веществ значительная часть содержащегося в них азота превращается в NH4, который под влиянием живущих в почве трифицирующих бактерий окисляется в азотную кисл¬оту. Она вступая в реакцию с находящимся в почве карбонатами (например с СаСО3), образует нитраты:
2HN03 + СаСО3 Са(NО3)2 + СО2 + Н20
Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигание дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать O2 от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) пере¬ходит в недоступную (свободный азот). Т.о., далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде. Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы возмещения потери азота. К таким процессам относятся прежде всего про¬исходящие в атмосфере электрические разряды. При грозах они синтезируют из азота и кислорода оксиды азота; последние с водой дают азотную кислоту, превращаясь в почве в ни¬траты (аммиак). Другим источником попадания азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бак¬терий поселяются на корнях растений из семейства бобовых, вы¬зывая образования характерных вздутий — «клубеньков». Усваи¬вая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. При распаде растительного и животного белка азот вновь попадает в неживую природу, откуда поступает в состав новых по¬колений живых организмов, а часть азота в виде моле¬кул возвращается в атмосферу. Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важных элементов питания растений.
29. Круговорот фосфора в природе.
Фосфор – очень важный элемент для всего живого, поскольку участвует в образовании и превращении азотистых веществ и углеводов в живых тканях – биосинтезе белков, нуклеиновых кислот, играющих главную роль в хранении и передаче наследственной информации и обеспечивающих синтез белков в клетках, пептидов и т.д., входит в состав
скелета, тканей мозга, хромосом, ферментов, вирусов, протоплазмы живой клетки.
Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах P содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме т.н. органического фосфата. По пищевым цепям P переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащегося P соединения в процессе клеточного дыхания для получения органической энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл. В отличие, например, от CO2, который, где бы он ни выделялся в атмосферу, свободно переносится в ней воздушными потоками, пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет «свободного возврата» в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет.