- •Вопросы по сопромату
- •1. Виды нагружения. Напряжение, основные понятия. Реальный объект.
- •2. Напряжение и деформированное состояние, свойства (характеристики) материала.
- •3. Метод сечения, виды внутренних силовых факторов.
- •4. Растяжение. Основные понятия, допущения и зависимости.
- •5. Растяжение, закон Гука. Основные понятия и зависимости, влияние на абсолютное удлинение стержня.
- •6. Механические характеристики материала. Диаграмма растяжения.
- •7. Деформации при растяжении (продольные, поперечные, коэффициент Пуассона).
- •8. Растяжение. Напряжение на наклонной поверхности стержня.
- •9. Кручение, основные понятия, правило знаков.
- •10. Кручение. Напряжение и деформация.
- •11. Изгиб. Основные понятия (допущения, чистый, поперечный). Виды опор.
- •12. Изгиб. Напряжение и деформация.
- •13. Изгиб. Правило Верещагина.
- •14. Сдвиг. Основные понятия, напряжения и зависимости. Расчет на срез.
- •15. Смятие. Основные понятия, напряжения и зависимости. Расчет.
- •16. Основы теории напряжения и деформации состояний, все понятия и положения.
- •17. Обобщенный закон Гука. Деформация при плоском и объемном напряжении состояния.
- •18. Изменение объема при объемном напряженном состоянии. Обобщенный закон Гука.
- •19. Теории предельных состояний. Общие понятия и назначение. 1, 2, 3 теории.
- •20. Теории предельных состояний. Общие понятия и назначение. 4, 5 теории.
- •21. Сложное сопротивление. Общие понятия и назначение. Косой изгиб. Изгиб с растяжением.
- •22. Сложное сопротивление. Общие понятия и назначение. Косой изгиб. Изгиб с кручением.
- •Вопросы по прикладной механике.
- •1.Реальный объект и его схема. Схематизация свойств материала, формы элементов конструкций нагрузок.
- •2. Внешние и внутренние силы. Применение метода сечения для определения внутренних сил и напряжений.
- •3. Понятие о напряжениях, деформациях и перемещениях. Нормальные и касательные напряжения. Вектор полного перемещения. Линейная и угловая деформация.
- •4. Растяжение и сжатие. Определение внутренних сил. Напряжение в поперечных и наклонных сечениях.
- •5. Продольная и поперечная деформация при растяжении и сжатии: Коэффициент Пуассона. Закон Гука при растяжении. Потенциальная энергия деформации.
- •6. Экспериментальное изучение свойств материалов при растяжении и сжатии. Диаграмма растяжения. Основные характеристики материалов (механические).
- •7. Расчет на прочность при растяжении и сжатии. Допускаемое напряжение и коэффициент запаса.
- •8. Чистый сдвиг. Напряжение и деформация при сдвиге.
- •9. Кручение бруса круглого поперечного сечения. Напряжение и деформация при кручении. Определение максимальных касательных напряжений.
- •10. Геометрические характеристики брусьев круглого поперечного сечения при кручении. Потенциальная энергия деформации при кручении.
- •11. Расчет валов на прочность и жесткость при кручении.
- •12. Моменты инерции сечения. Вычисление моментов инерции брусьев прямоугольного и круглого сечений.
- •13. Изгиб брусьев. Внутренние силовые факторы в поперечных сечениях бруса и их эпюры. Дифференциальные зависимости при изгибе.
- •14. Примеры элементов конструкций, работающих на изгиб. Типы опор и определение опорных реакций.
- •15. Расчет на прочность при изгибе.
- •16. Напряжение в брусе при поперечном изгибе.
- •17. Аналитический метод определения перемещений в балках при изгибе. Дифференциальное уравнение упругой линии. Вычисление прогибов и углов поворотов сечений.
- •1 8. Потенциальная энергия бруса в общем случае нагружения.
- •19. Определение перемещения бруса случаем Верещагина.
- •20. Напряженное состояние в точках тела. Главные площадки и главные напряжения. Виды напряженного состояния.
- •22. Теории (гипотезы) прочности и их назначение. Понятие об эквивалентных напряжениях. Содержание и области применения теории прочности.
- •23. Сложное сопротивление бруса. Расчеты на прочность при косом изгибе.
- •28. Местные напряжения. Концентрация напряжения.
- •29. Контакные напряжения. Формула Герца для сжатых цилиндров.
- •30. Устойчивость.
- •Вопросы по деталям машин.
- •1. Основные критерии работоспособности и расчета деталей машин: прочность, жесткость, износостойкость, теплостойкость, виброустойчивость.
- •2. Сварные соединения. Область применения. Конструкции сварных соединений.
- •3. Расчет на прочность сварного соединения встык.
- •4. Расчет на прочность сварного соединения внахлестку лобового, флангового, комбинированного швов.
- •5. Шпоночные соединения. Общие сведения и область применения. Расчет на прочность.
- •6. Шлицевые соединения. Конструкция, классификация и область применения.
- •7. Расчет на прочность шлицевых соединений.
- •8. Резьбовое соединение. Основные геометрические параметры резьбы. Классификация резьб по форме профиля, число ходов, направления винтовой линии. Назначение.
- •9. Основные типы резьбовых соединений.
- •10. Теория винтовой пары. Зависимость между моментом завинчивания и осевой силы винта.
- •11. Расчет витков резьбы на срез и смятие.
- •12. Расчет на прочность резьбы и стержня винта при нагружении резьбового соединения осевой растягивающей силе.
- •14. Расчет на прочность стержня винта при нагружении резьбового соединения поперечной нагрузкой (болт поставлен с зазором).
- •15. Механические передачи. Назначения и классификация. Основные кинематические и силовые соотношения передачи.
- •16. Фрикционные передачи, принцип работы. Кинематические силовые зависимости.
- •17. Основные типы вариаторов. Диапазон регулирования в простых и сдвоенных вариаторах.
- •18. Упругое и геометрическое скольжение во фрикционных передачах. Расчет на прочность.
- •19. Ременные передачи. Общие преимущества и недостатки. Область применения. Классификация. Основные типы материалов и конструкция ремней.
- •20. Зубчатые передачи. Оценка и применение. Основные сведения из теории эвольвентного зацепления (эвольвента и её свойства, понятие об основном законе зацепления).
- •21. Основные геометрические параметры прямозубых цилиндрических колес.
- •22. Виды разрушений зубьев. Критерии работоспособности и расчетов зубчатых передач.
- •23. Силы, действующие в зацеплении цилиндрической прямозубой передачи.
- •24. Расчет на прочность зубьев цилиндрических прямозубых передач по контактным напряжениям.
- •25. Расчет зубьев прямозубых цилиндрических колес на изгиб.
- •26. Основные геометрические параметры косозубых цилиндрических колес.
- •27. Силы, действующие в зацеплении цилиндрической косозубой передаче.
- •28. Особенности расчета на прочность цилиндрической косозубой передачи по контактным напряжениям.
- •29. Особенности расчета на прочность цилиндрической косозубой передачи по напряжениям изгиба.
- •30. Материалы зубчатых колес. Определение допускаемых контактных и изгибных напряжений.
- •31. Расчетная нагрузка. Коэффициент концентрации и динамичности нагрузки.
- •32. Валы и оси. Общие сведения.
- •33. Проектный расчет валов.
- •34. Проверочный расчет валов на усталостную прочность.
- •35. Подшипники качения. Общие сведения и классификация.
- •36. Конструкция подшипников качения (шариковый радиальный однорядный и радиально-упорный, радиальный роликовый с короткими цилиндрическими роликами и радиально-упорный конический, шариковый упорный).
- •37. Характер, причины разрушения и критерии расчета подшипников качения.
- •38. Расчет подшипников качения на долговечность.
- •39. Особенности расчета радиально-упорных подшипников.
- •40. Порядок подбора подшипников качения.
- •1.1.1Механическое движение. Равновесие
- •1.1.2Материальная точка. Абсолютно твердые и деформируемые тела
- •1.1.3Сила-вектор. Система сил. Эквивалентность сил
- •1.1.4Аксиомы статики
- •1.1.5Связи и их реакции
- •1.2.1 Геометрический метод сложения сил
- •1.2.2 Проекция силы на ось
- •1.2.3 Проекция векторной суммы на ось
- •1.2.4 Аналитическое определение значения и направления равнодейсвующей плоской системы сходящихся сил(метод проекций)
- •1.2.5 Уравнения плоской системы сходящихс сил
- •1.3.1 Пара сил и её действие на тел
- •1.3.2 Эквивалентность пар
- •1.3.3 Сложение и равновесие пар сил на плоскости
- •1.3.4 Момент сил относительно точки и оси
- •1.4.1 Приведение силы к точке
- •1.4.2 Приведение плоской системы сил к данной точке
- •1.4.3 Теорема о моменте равнодействующей(теорема Вариньона)
- •1.4.4 Уравнения равновесия плоской системы сил
- •1.4.5 Опорные устройства балочных систем
- •12. Момент силы относительно оси
- •§ 13. Равновесие твердого тела под действием произвольной пространственной системы сил
19. Определение перемещения бруса случаем Верещагина.
П равило Верещагина – графоаналитич. прием вычисления интегралов. Заключается в замене операций интегрирования перемножением площади эпюры моментов от внешней нагрузки F на ординату ус линейной эпюры моментов от единич. силы F0, расположенную под центром тяжести площади первой эпюры. Исп.только если жесткость сечения бруса по всей длине постоянна, т.к. эпюры от единич. силовых факторов на прямолинейн. участках оказываются линейными: Mx1=f(z)=b+kz. Интеграл (l)∫MxFMx1dz можно заменить на (0)∫(l)f1(z)f2(z)dz=(0)∫(l)f1(z)(b+kz)dz=b(0)∫(l)f1(z)dz+k(0)∫(l)zf1(z)dz. С – центр тяжести. Интеграл Мора, составленный для каж. из участков нагружения балки, = произведению площади F нелинейн. эпюры изгиб. моментов MxF на ординату ус эпюры изгиб. момента Мх1, соотв-щую положению центра тяжести площади F: Vk=∑F∙yc/EIx.
20. Напряженное состояние в точках тела. Главные площадки и главные напряжения. Виды напряженного состояния.
Напряженное состояние в точке тела – совокупность напряжений во мн-ве площадок, проходящих через заданную точку. Исследование напряженного состояния необходимо для расчета на прочность в сложном случае напряжения. Моделью служит куб, параллелепипед. σij: i – перпендикулярная ось, j – вдоль. Из условия равновесия элементарного куба τyx=τxy. F=τ·S= τxy·(dz·dy)·dx; τyx=dx·dz·dy·τxy. => τyx=τxy.
Напряженное состояние элементарного куба описывается 9 компонентами (3 нормальных, 6 касательных). Учитывая закон парности касат.напряжений (τyx=τxy), напряженное состояние описывается 6 компанентами.
Понятие о главных напряжениях. Через заданную точку всегда можно провести только 3 взаимноперпендик. площадки, в которых τ=0. Это главные площадки, а нормальные напряжения – главные напряжения. Взаимные соотношения между главными напряжениями: σ1≥σ2≥σ3.
Сущ. 3 вида напряженного состояния тела:
1 . действует только одно главное напряжение σ1 – одноосное напряженное состояние (растяжение).
2. действуют σ1, σ2 – плоское напряженное состояние (двуосное).
3. объемное напряженное состояние (трехосное).
21=17. Деформация бруса при объемном напряженном состоянии. Обобщенный закон Гука.
22. Теории (гипотезы) прочности и их назначение. Понятие об эквивалентных напряжениях. Содержание и области применения теории прочности.
Предельное напряженное состояние у пластич. материалов возник. при остаточных деформациях, у хрупких – просто разрушение. Оценить прочность детали находящейся в сложном напряженном состоянии через хорошо известное простое напряженное состояние - растяжение – самое хорошо изученное. Эквив. напряжение – кот. необходимо создать в растянутом стержне, чтобы его напряженное состояние было эквивалентно сложнонапряженному состоянию, кот. рассматривается. Суть гипотез прочности: сложное выразить через простое. Т1: О наиб. σ, Галилей – Причина разрушения материала есть наиб. нормальное напряжение в к.-л. точке, в к.-л. направлении. Для тв. материалов; недостаток: не учитывает глав. напряжения σ2 и σ3. σmax≤[σ]. Т2: О наиб. линейных деформациях, Мариотт – Прочность материала в данной точке завис. от величины деформации. εmax≤[ε]. Из з-на Гука σ=Eε. Тогда σ1/Е – μσ2/Е – μσ3/Е≤[σ]/Е, σэкв=σ1–μσ2–μσ3 ≤ [σ]. Т3: О наиб. τ, Кулон – Разрушение происх. когда в к.-л. точке на двух взаимноперпендик. площадках τ достигает предельного значения. Для пластич. материалов; недост: не учитывает глав. напряжение σ2. τmax≤[τ]. (σ1-σ3)/2 ≤ [σ]/2, σэкв=σ1-σ3 ≤ [σ]. Для плоского напряженного состояния σэкв=√(σ2+4τ2)≤ [σ]. Т4: Энергетическая теория, Бельтрами – Предельное напряженное состояние возник. при некотором значении потенциальной энергии, затрачиваемой на формообразование. Uф≤[Uф]. Для плоского напряженного состояния σэкв=√(σ2+3τ2)≤ [σ]. Т5: Оскара Мора – Прочность материала завис. от вел-ны и знака наибольших и наим. глав. напряжений. σ1–kσ3≤[σ], где k – коэф., учитывающий различ. поведения материала при растяжении и сжатии. k=[σр]/ [σс], k=[σвр]/ [σвс].