
- •Предисловие
- •1. Физиологические основы мышечной деятельности
- •1.1. Ультраструктура скелетного мышечного волокна
- •Контрольные вопросы
- •1.2 Двигательные единицы
- •Контрольные вопросы
- •1.3. Типы мышечных волокон
- •1) Характеру сокращения:
- •2) Скорости сокращения:
- •3) Типу окислительного обмена:
- •Контрольные вопросы
- •1.4. Нервно-мышечная передача
- •Контрольные вопросы
- •1.5. Механизм мышечного сокращения
- •Контрольные вопросы
- •1.6. Химические и тепловые процессы при сокращении мышц
- •1. Анаэробные пути ресинтеза атф:
- •Теплообразование при мышечном сокращении
- •Контрольные вопросы
- •1.7. Режимы и виды мышечного сокращения
- •Виды мышечных сокращений
- •Контрольные вопросы
- •1.8. Показатели деятельности мышц
- •1) Внутримышечные факторы
- •2) Особенности нервной регуляции
- •3) Психофизиологические механизмы
- •Контрольные вопросы
- •1.9. Утомление мышц
- •Контрольные вопросы
- •1.10. Рабочая гипертрофия мышц
- •1) Саркоплазматический
- •2) Миофибриллярный
- •Контрольные вопросы
- •1.11. Оценка функционального состояния мышечной системы у человека
- •Контрольные вопросы
- •1.12. Влияние гипокинезии и гиподинамии на структуру и функцию мышц
- •Контрольные вопросы
- •1.13. Тестовые задания
- •1.14. Ситуационные задачи
- •2. Биохимические основы мышечной деятельности
- •2.1. Особенности химического состава поперечно-полосатых мышц
- •Контрольные вопросы
- •2.2. Этапы катаболизма пищевых веществ
- •Контрольные вопросы
- •2.3. Значение пирувата в катаболизме пищевых веществ
- •Количественное определение пировиноградной кислоты в моче колориметрическим методом по Умбрайту
- •Определение пирувата в крови
- •Контрольные вопросы
- •2.4. Биохимические основы функционирования фосфагенного пути ресинтеза аденозинтрифосфата
- •Определение креатинина в моче
- •Образование аммиака в мышцах
- •Контрольные вопросы
- •2.5. Биохимические основы функционирования лактацидного пути ресинтеза аденозинтрифосфата
- •Количественное определение молочной кислоты в сыворотке крови по реакции Уффельмана
- •Контрольные вопросы
- •2.6. Биохимические основы функционирования аэробных путей ресинтеза аденозинтрифосфата
- •2 Пируват
- •2 Ацетил-КоА
- •Особенности окисления ненасыщенных жирных кислот
- •Методика расчета количества атф, образующейся при окислении жирных кислот на примере пальмитиновой кислоты (с16)
- •Методика расчета количества атф при окислении таг (на примере трипальмитата)
- •Определение уровня общих липидов в плазме (сыворотке) крови по цветной реакции с сульфофосфованилиновым реактивом
- •Контрольные вопросы
- •2.7. Роль липидного обмена в адаптации к мышечной деятельности
- •Контрольные вопросы
- •2.8. Роль гормонов в обеспечении мышечной деятельности
- •Контрольные вопросы
- •2.9. Тестовые задания
- •2.10. Ситуационные задачи
- •3. Эталоны ответов к тестовым заданиям и ситуационным задачам
- •6. Рекомендуемая литература
Теплообразование при мышечном сокращении
В работающей мышце доля энергии, потраченной на выполнение механической работы приблизительно в пять раз меньше энергии, высвобождаемой в виде теплоты. По характеру своего происхождения и времени развития теплообразование подразделяют на две основные фазы: фазу начального теплообразования и фазу восстановительного теплообразования (схема 1).
Схема 1. Различные фазы теплообразования в мышцах млекопитающих.
Фаза начального теплообразования примерно в 1000 раз короче фазы восстановительного теплообразования. Она начинается с момента возбуждения мышцы и продолжается в течение всего сокращения, включая фазу расслабления. А. Хиллом было установлено, что начальное теплообразование можно разделить на несколько компонентов:
1. Теплота активации — быстрое выделение тепла на ранних этапах мышечного сокращения, когда отсутствуют видимые признаки укорочения или развития напряжения. Теплообразование на этой стадии обусловлено выходом ионов Са2+ из триад и соединением их с тропонином.
2. Теплота укорочения — выделение тепла при совершении работы, если речь идет не об изометрическом режиме. При этом, чем больше совершается механической работы, тем больше выделяется тепла.
3. Теплота расслабления — выделение тепла упругими элементами мышцы при расслаблении. При этом выделение тепла не связано непосредственно с процессами метаболизма.
В процессе образования тепловой энергии в мышце выделяют 2 фазы (рис. 14).
Рис. 14.Тепловые процессы в мышцах
Первая фаза начального теплообразования начинается с момента возбуждения мышцы, продолжается в течение всего сокращения, включая и фазу расслабления. В эту фазу, особенно в латентный период величина теплопродукции в единицу времени наивысшая (до 3,5 условных единиц) и наименьшая в начальный период расслабления мышцы. Тепловая энергия образуется в результате химических процессов расщепления АТФ, обеспечивающих возбуждение, сокращение и расслабление мышцы.
Вторая фаза теплообразования длится несколько минут после расслабления мышцы и называется фазой отставленного теплообразования или восстановительного. Она обусловлена процессами, обеспечивающими ресинтез АТФ. Главную роль в ресинтезе АТФ и восстановительном теплообразовании играют процессы гликолиза и окислительного фосфорилирования. Примерно 90% восстановительного тепла образуется за счет окислительных процессов, и лишь 10% обеспечивается анаэробными процессами. В первую фазу выделяется около 40%, а во вторую - около 60% всей тепловой энергии, образовавшейся в мышце.
Как уже указывалось, не вся энергия мышечного сокращения направляется на выполнение механической работы. Значительная часть ее рассеивается в виде тепла. Коэффициент полезного действия мышечной работы (КПД) – это отношение величины внешней механической работы (W) к общему количеству выделенной в виде тепла энергии (Е):
КПД= W/Е100%
Наиболее высокий показатель КПД изолированной мышцы наблюдается при внешней нагрузке, составляющей 50 % от ее максимального значения, и при скорости укорочения мышцы в пределах 30 % ее максимума. В таких условиях КПД составляет 20-30 %. Эти результаты, полученные на изолированных мышцах, близки к результатам исследований на человеке. Во время мышечной работы показатели КПД составляют 15-30 % в зависимости от характера работы (интенсивность, срочность, факторы внешней среды и т.п.), соотношения динамического и статического напряжения, набора мышечных групп, реализующих двигательную задачу.